» » Как определить бесконтактное зажигание от контактного отличия. Чем бесконтактное зажигание лучше контактного? Процесс установки БСЗ

Как определить бесконтактное зажигание от контактного отличия. Чем бесконтактное зажигание лучше контактного? Процесс установки БСЗ

Владельцы машин всегда стремятся усовершенствовать и улучшить работу своего автомобиля. Устанавливая различное оборудование, они делают передвижение на авто более удобным, надёжным, безопасным. Бесконтактная система зажигания позволит сделать работу двигателя более эффективной и экономной. Даже если авто было оснащено на заводе контактной системой, то его легко переоборудовать и установить БСЗ.

Несмотря на то что стоимость нового бесконтактного комплекта достаточно высока, целесообразность такого переоборудования отмечают как водители, так и автомастера.

Преимущества и недостатки БСЗ

Бесконтактное зажигание ставится на большинство новых машин и некоторые иномарки старше 15 лет. Даже если на авто не стоит электронная система зажигания, то монтаж и её настройка не вызывают сложностей даже у начинающих мастеров.

В обычном варианте зажигания достаточно часто выходит из строя контактная пара, что доставляет владельцу транспортного средства массу неудобств. В электронных системах такой недостаток исключён, благодаря чему устройство более надёжно и стабильно в работе.

Бесконтактное зажигание хорошо справляется со своей задачей даже при влажной и холодной погоде, что является несомненным плюсом по сравнению с контактным.

Более современная конструкция совместима со всеми марками и моделями авто, поэтому переоборудование может выполняться на всех машинах.

Среди преимуществ электронной системы специалисты отмечают три основных параметра.

  1. Возможность более эффективного использования свечей. Так как электричество подаётся на первичную обмотку через коммутатор, то на вторичной обмотке катушки можно получить значительно большее напряжение. Мощная искра обеспечивает стабильный поджиг смеси даже в движках с высокой компрессией. Так как контакты отсутствуют, то они не пригорают, благодаря чему в процессе эксплуатации БСЗ не происходит снижение мощности искры.
  2. Экономность. Благодаря электромагнитному импульсному создателю, пришедшему на замену контактной группы, импульсы имеют более стабильные и лучшие характеристики. Двигатель, оборудованный электронной системой зажигания, имеет более высокие показатели мощности при том, что расход топлива может снижаться в среднем на 1 литр на 100 км. Также импульсный создатель гарантирует стабильность работы при различных оборотах мотора.
  3. Более редкое обслуживание. В отличие от КСЗ, которую рекомендуется обслуживать каждые 5 — 7 тысяч км, электронное оборудование менее подвержено поломкам и не нуждается в частой регулировке. Бесконтактную систему в среднем нужно обслуживать каждые 10 — 12 тысяч км. Чаще всего регламентные работы предполагают смазывание трамблера. Иногда может потребоваться замена отдельных деталей, но их неисправности встречаются достаточно редко.

Также автолюбители отмечают и другие плюсы, которые, по их мнению, играют важную роль при выборе системы зажигания. Бесконтактное электронное зажигание потребляет минимальное количество электричества в заведённом состоянии, что существенно экономит заряд аккумулятора. Для работы системы требуется гораздо меньшее количество тока, благодаря чему авто заведётся даже при полностью разряженном аккумуляторе «с толкача».

Среди недостатков зажигания можно отметить некачественные коммутаторы. Очень часто встречаются случаи, когда коммутатор отечественного производства выходил из строя всего через несколько тысяч километров после установки, поэтому не стоит экономить на всех деталях системы.

Качественные комплектующие — залог надёжной и долговечной работы БСЗ.

Ещё одной деталью, которая чаще всего выходит из строя, является реле холостого хода. Запчасть не подлежит ремонту, поэтому её приходится менять при поломке. Так как в установленных на заводе бесконтактных системах чаще всего используются не совсем качественные детали, то многие автомастера рекомендуют сразу заменить некоторые части зажигания:

  • датчик Холла;
  • коммутатор;
  • катушка (читайте также, );
  • бегунок;
  • крышка трамблера.

В некоторых случаях целесообразно установить блоки зажигания для электронных систем.

Из чего состоит БСЗ?

Бесконтактное зажигание включает в себя небольшое количество деталей, благодаря чему снижается вероятность выхода из строя каждой из них. Система состоит из:

  1. Источника питания. Во всех автомобилях им является аккумуляторная батарея.
  2. Выключатель зажигания и стартера. Деталь необходима для правильного распределения времени работы устройства.
  3. Катушка зажигания. Преобразовывает низковольтный ток от аккумулятора в высоковольтный, благодаря чему обеспечивается стабильная работа авто.
  4. Транзисторный коммутатор. Отвечает за прерывание поступления электрического тока на катушку.
  5. Датчик зажигания. Фиксирует перемены в магнитном поле.
  6. Распределительный датчик. Датчик объединён с импульсным, который бывает нескольких видов. Импульсный датчик чаще всего представлен датчиком Холла, но также существуют ещё две разновидности — индуктивный и оптический.
  7. Свечи.

Что понадобится для монтажа бесконтактной системы?

Установка зажигания требует минимальной подготовки, благодаря чему монтаж может произвести каждый желающий. Для проведения монтажных работ понадобятся:

  • ключи под номерами 8, 10 и 13;
  • крестовидная отвёртка;
  • дрель с комплектом насадок;
  • саморезы различной длины.

Эти инструменты понадобятся в процессе монтажа, но под рукой также стоит иметь и другие гаечные ключи, а также плоскогубцы, отвёртку с набором бит.

Процесс установки БСЗ

В первую очередь необходимо снять клемму с аккумулятора для предотвращения замыкания системы. Бесконтактное зажигание на ВАЗ-2106 предполагает монтаж в несколько этапов. Нет разницы, с какой части системы начинать замену. Можно начать с переустановки с переустановки трамблера:

  1. В первую очередь необходимо демонтировать высоковольтные провода.
  2. Вращая коленчатый вал, нужно поставить бегунок в перпендикулярное положение по отношению к оси мотора. Мастера рекомендуют поставить отметку расположения трамблера (средней метки). Данная процедура облегчит последующую установку и корректировку работы БСЗ.
  3. Демонтировать крепеж трамблера и снять деталь.
  4. Установить новую запчасть, а бегунок поставить в положение в соответствие с ранее проставленными метками.
  5. Далее надевается крышка трамблера и устанавливаются провода.

Далее можно приступить к замене катушки. Манипуляция достаточно простая, но необходимо придерживаться правильного расположения контактов. При расположении контактов с другой стороны необходимо перевернуть деталь. В последнюю очередь лучше переустановить коммутатор. Деталь монтируется при помощи саморезов. Обязательным условием выступает прислонение радиатора к кузову автомобиля. После того, как вся система собрана, необходимо тщательно проверить все электрические соединения и соответствие расположения деталей согласно схеме.

Корректировку работы лучше осуществлять при помощи специального оборудования — стробоскопа. В случае отсутствия спецоборудования можно выполнять регулировку по звуку. Так как на слух определяется работа не только зажигания, то необходимо, чтобы все системы работали слаженно и исправно. Настройка происходит следующим образом:

  1. Прогрев мотора.
  2. Открутка гайки, которая отвечает за фиксацию трамблера.
  3. При работающем движке необходимо аккуратно проворачивать трамблер до того момента, пока обороты ДВС станут наиболее максимальными и ровными.
  4. Затяжка крепежа.
  5. На третьей скорости машину необходимо ускорить до 50 км/час. При переключении на четвёртую скорость потребуется резко нажать на педаль газа. В норме возникает звук, схожий с детонацией. Звук должен сохраняться в течение некоторого времени, пока авто не ускориться ещё на 3 — 5 км. В случае, когда звук не прекращается, необходимо провести повторную настройку и во время неё провернуть деталь на один градус по часовой стрелке. Если звук не появился, а при нажатии педали происходит провал оборотов, то во время корректировки запчасть проворачивается против часовой стрелки.

Так как настройка БСЗ – достаточно сложное занятие, требующее специальных навыков и умений, то целесообразней обратиться в автоцентр. Мастера СТО выполнят регулировку при помощи профессионального оборудования, благодаря чему настройка будет точной и продлит срок эксплуатации системы. Если нет уверенности в своих сил в процессе установки бесконтактной системы, то также лучше обратиться в сертифицированный центр.

Чаще всего на проведение комплексных работ предоставляется скидка. Если установка электронного зажигания на ВАЗ-2106 выполнялась на СТО, то лучше попросить гарантию на проведённые работы.

При отказе в выдаче гарантийных обязательств лучше обратиться в другой автосервис.

Как и у контактной системы зажигания у бесконтактной существует характерные неисправности. Самая типичная из них — выход из строя датчика Холла. Примечательной особенностью является то, что без него система зажигания работать не может. Если датчик вышел из строя, то его необходимо заменить в кратчайшие сроки для восстановления работоспособности автомобиля. Также распространёнными неисправностями являются:

  1. Выход из строя свечей, поломка катушки.
  2. Нарушение в электрической цепи. Причины могут быть самые разные (обрывы, окисление либо неплотное прилегание контактов).

Если в систему был установлен электронный блок управления, например, «Октан» либо «Пульсар», то к распространённым поломкам также можно отнести его неисправность и выход из строя входных датчиков. Экономить на БУ не стоит, так как некачественные детали могут стать причиной преждевременной поломки всей системы. Чаще всего неисправности возникают по причине несвоевременного обслуживания БСЗ. Регулятор холостого хода может также выходить из строя по причине неправильной работы других систем автомобиля.

Среди причин, которые способствуют появлению неисправностей, отмечают:

  1. Несвоевременный техосмотр всех систем авто. Неправильная работа двигателя и свечей может привести к тому, что система зажигания преждевременно выйдет из строя. В случае с БСЗ стоимость ремонта будет достаточно высокой.
  2. Использование некачественного топлива. Бензин либо газ с посторонними примесями приводит к тому, что зажигание не происходит либо получается с задержкой. Невнимательное отношение к качеству топлива станет причиной выхода из строя всех запчастей, которые контактируют с ним и воздушно-топливной смесью.
  3. Использование в системе деталей, не прошедших сертификацию либо отличающихся низким качеством. Помимо того, что такие детали очень быстро выходят из строя, они могут стать причиной серьёзных поломок всей БСЗ и контактирующих с ней устройств.
  4. Механические повреждения. Если на систему зажигания оказывается механическое воздействие в виде ударов, сильной вибрации, то она значительно быстрей изнашивается и может понадобиться полная замена.
  5. Особенности погоды. Устройства при работе в экстремальных условиях имеют более низкий ресурс работы. Повышенная влажность приведёт к более быстрому окислению контактов, поэтому плановое обслуживание понадобится проводить чаще.

Любая неисправность сильно будет влиять на работоспособность машины, поэтому её необходимо устранить в кратчайшие сроки. Для этого можно воспользоваться услугами профессионалов либо попытаться выполнить его самостоятельно. В первую очередь необходимо проверить состояние свечей. В среднем свечи заменяются в БСЗ каждые 18 — 20 тысяч километров пробега независимо от их состояния. Если замена выпадает на зимний период, а свечи визуально в рабочем состоянии, то их можно отложить и использовать в весенне-осенний период.

Изношенные свечи, которые имеют изолятор светлого серо-коричневого оттенка свидетельствуют о том, что детали совместимы с данным типом двигателя, а мотор работает исправно и стабильно. Нагар чёрного цвета свидетельствует о том, что свечи не подходят для данного движка либо топливная смесь переобогащена горючим. Выгорание электродов указывает на проблему в работе ДВС.

Неправильная работа может быть вызвана некачественным топливом, неверными пропорциями рабочей смеси, некорректной установкой системы зажигания.

Если не запускается движок, то возможны следующие причины поломки:

  1. Электрический ток не поступает на контакты прерывания из-за того, что они загрязнились, окислились либо пригорели.
  2. На контактах появились деформации.
  3. Обрыв проводов либо их замыкание на массу.
  4. Поломка выключателя зажигания из-за чего не происходит замыкание контактов цепи.
  5. Выход из строя конденсатора вследствие замыкания.
  6. Обрыв в катушке зажигания. Дефект проявляется преимущественно в нарушении целостности первичной обмотки. В некоторых случаях причиной может стать повреждение вторичной обмотки.
  7. Утечка электрического тока в роторе распределителя. Данный процесс возможен при попадании во внутрь влаги либо образовании нагара на внутренней стороне крышки.
  8. Не поступает питание на свечи. Помимо повреждения целостности проводов причиной такой неисправности может стать неправильная посадка свечей в гнёздах, их замасление либо окислении наконечников.

Все эти причины решаются переборкой системы зажигания и переустановкой некоторых деталей. Иногда может потребоваться регулировка работы движка, которую лучше произвести в специализированном автосервисе.

Другим признаком неисправности может стать неустойчивая работа движка либо остановка его работы на холостом ходе. Причиной такой неисправности чаще всего становится:

  • преждевременное зажигание в цилиндрах, что не позволяет полноценно работать мотору;
  • увеличенное расстояние между электродами свечей;
  • послабление пружины грузиков в регуляторе, который отвечает за контроль за опережением зажигания.

В основном причины данных поломок кроются в неправильной регулировке. Повторная настройка или корректировка положения позволит за короткий срок забыть о проблеме. Все манипуляции удобно проводить самостоятельно, но необходимо заранее подготовить ветошь, так как чаще всего в процессе работы сильно пачкаются руки.

Если в работе двигателя наблюдаются сбои при различной частоте вращения, то причинами такой неисправности со стороны бесконтактной системы зажигания могут стать:

  • повреждения проводов, послабление их креплений, окислительные процессы на наконечниках;
  • повреждение контактов прерывателя: сгорание, окисление, загрязнение, сдвиги;
  • нарушение работоспособности конденсатора;
  • ослабление пружинки уголька, её надлом либо износ;
  • подгорание контактов в роторе;
  • проблемы со свечами.

Если вариант со свечами исключён, то лучше обратиться в автоцентр для проведения комплексной диагностики всего авто и выявления причин нестабильной работы ДВС.

Ещё одной характерной неисправностью, которая появляется из-за неправильной работы зажигания, выступает невозможность развить полную скорость. В таком случае причинами могут выступать:

  • неправильный монтаж момента зажигания;
  • чрезмерный износ втулки в прерывателе;
  • заедание грузиков либо послабление их пружин в регуляторе опережения зажигания.

Если нет уверенности, что ремонт будет проведён качественно, то стоит обратиться в центры, которые специализируются на данных устройствах. Опытные мастера не только восстановят работоспособность авто, но и могут дать несколько советов, которые существенно улучшат качество поездок, а также продлят срок службы деталей.

Лекция 7 . Измерение температуры. Контактный и бесконтактный способы. Измерение тепловых потоков.

7.1. Измерение температуры.

Температура - это параметр теплового состояния, представляющий собой физическую величину, которая характеризует степень нагретости тела. Степень нагретости тела обусловлена его внутренней энергией. Непосредственно измерить температуру тела невозможно. Температура измеряется косвенным путем с использованием температурной зависимости какого-либо физического свойства термометрического тела. В качестве термометрического тела используются тела, у которых удобные для непосредственного измерения физические свойства однозначно зависят от температуры. Такими физическими свойствами являются, в частности, объемное расширение ртути, изменение давления газов и т.д.

При измерении температуры какого-либо тела термометрическое тело должно быть с ним в тепловом контакте. В этом случае с течением времени наступает тепловое равновесие между ними, т.е. температура этих тел выравнивается. Такой способ измерения температуры, при котором измеряемая температура тела определяется по совпадающей с ней температуре термометрического тела, называется контактным способом измерения температуры. Возможные расхождения между этими значениями температуры составляют методическую погрешность контактного способа измерения температуры.

В природе нет идеально подходящих рабочих тел, термометрические свойства которых удовлетворяли бы предъявляемым требованиям во всем диапазоне измерения температуры. Поэтому температуру, измеряемую термометром, шкала которого построена на допущении линейной температурной зависимости термометрических свойств какого-либо тела, называют условной температурой, а шкалу - условной температурной шкалой. Примером условной температурной шкалы является известная стоградусная шкала Цельсия. В ней принят линейный закон температурного расширения ртути, а в качестве основных точек шкалы используются точка таяния льда (0°С) и точка кипения воды (100°С) при нормальном давлении. Термодинамическая температурная шкала, предложенная Кельвином, основана на втором законе термодинамики и не зависит от термометрических свойств тела. Построение шкалы опирается на следующие положения термодинамики: если в прямом обратимом цикле Карно к рабочему телу подводится теплота Q 1 от источника с высокой температурой T 1 и отводится теплота Q 2 к источнику с низкой температурой Т 2 , то отношение T 1 / Т 2 равно отношению Q 1 /Q 2 независимо от природы рабочего тела. Эта зависимость позволяет построить шкалу, опираясь только на одну постоянную или реперную точку с температурой Т 0 . Пусть температура источников теплоты Т 2 =Т 0 , a T 1 =T, причем Т неизвестна. Если между этими источниками осуществить прямой обратимый цикл Карно и измерить количество подводимой Q 1 и отводимой Q 2 теплоты, то неизвестную температуру можно определить по формуле

Таким способом можно произвести градуирование всей температурной шкалы.

В качестве единственной реперной точки для Международной термодинамической температурной шкалы принята тройная точка воды, и ей присвоено значение температуры 273,16 К. Выбор этой точки объясняется тем, что она может быть воспроизведена с высокой точностью - погрешность не превысит 0,0001 К, что значительно меньше погрешности воспроизведения точек таяния льда и кипения воды. Кельвином называется единица термодинамической температурной шкалы, определяемая как 1/273,16 часть температурного интервала между тройной точкой воды и абсолютным нулем. Такой выбор единицы обеспечивает равенство единиц в термодинамической и стоградусной шкалах: температурный интервал в 1К равен интервалу в 1°С.

Ввиду того, что определение температуры путем осуществления прямого обратимого цикла Карно с измерением подводимой и отводимой теплоты сложно и затруднительно, для практических целей на основе термодинамической температурной шкалы установлена Международная практическая температурная шкала МПТШ-68 (1968 - год принятия шкалы). Эта шкала устанавливает температуру в диапазоне от 13,81 К до 6300 К и максимально приближена к Международной термодинамической температурной шкале. Методика ее реализации базируется на основных реперных точках и на эталонных приборах, градуированных по этим точкам. МПТШ- 68 опирается на 11 основных реперных точек, представляющих собой оп-ределенное состояние фазового равновесия некоторых веществ, которым присвоено точное значение температуры.

7.1.1. Контактное измерение температуры.

По принципу действия контактные термометры делятся на:

1.Термометры, основанные на тепловом расширении вещества. Используются с термометрическим телом в жидком состоянии (например, ртутные жидко-стеклянные термометры) и в твердом состоянии - биметаллические, действие которых основано на различии коэффициентов линейного теплового расширения двух материалов (например, инвар -латунь, инвар - сталь).

2. Термометры, основанные на измерении давления вещества.

Это манометрические термометры, которые представляют собой замкнутую герметичную термосистему, состоящую из термобаллона, манометрической пружины и соединяющего их капилляра.

Действие термометра основано на температурной зависимости давления газа (например, азота) или паров жидкости, заполняющих герметичную термосистему. Изменение температуры термобаллона вызывает перемещение пружины, соответствующее измеряемой температуре. Манометрические термометры выпускаются как технические приборы для измерения температуры от -150°С до +600°С в зависимости от природы термометрического вещества.

3. Термометры, основанные на температурной зависимости термо-ЭДС. К ним относятся термоэлектрические термометры или термопары.

4.Термометры, основанные на температурной зависимости электрического сопротивления вещества. К ним относятся электрические термометры сопротивления.

Жидкостный стеклянный термометр представляет собой тонкостенный стеклянный резервуар, соединенный с капилляром, с которым жестко связана температурная писала. В резервуар с капилляром заливается термометрическая жидкость, на температурной зависимости теплового расширения которой основано действие термометра. В качестве термометрической жидкости используется ртуть и некоторые органические жидкости - толуол, этиловый спирт, керосин.

Достоинствами жидкостных стеклянных термометров являются простота конструкции и обращения; низкая стоимость, достаточно высокая точность измерения. Эти термометры применяются для измерения температуры от минус 200°С до плюс 750°С.

Недостатками жидкостных стеклянных термометров являются большая тепловая инерция, невозможность наблюдения и измерения температуры на расстоянии, хрупкость стеклянного резервуара.

Термоэлектрический термометр основан на температурной зависимости контактных термо-ЭДС в цепи из двух разнородных термоэлектродов. При этом происходит преобразование неэлектрической величины-температуры в электрический сигнал - ЭДС. Термоэлектрические термометры часто называют просто термопарами. Термоэлектрические термометры широко применяют в диапазоне температуры от -200°С до +2500°С, но в области низких температур (менее -50°С) они получили меньшее распространение, чем электрические термометры сопротивления. При температуре выше 1300°С термоэлектрические термометры применяют в основном для кратковременных измерений. Достоинствами термоэлектрических термометров являются возможность измерения температуры с достаточной точностью в отдельных точках тела, малая тепловая инерция, достаточная простота изготовления в лабораторных условиях, выходной сигнал является электрическим.

В настоящее время для измерения температур используются следующие термопары:

Вольфрам-вольфрамрениевые (ВР5/20) до 2400...2500К;

Платино-платинородиевые (Pt/PtRh) до 1800... 1900 К;

Хромель-алюмелевые (ХА) до 1600.. .1700 К;

Хромель-копелевые (ХК) до 1100 К.

При подключении измерительного прибора к термопарной цепи возможны 2 схемы:

1) с разрывом одного из термоэлектродных проводов;

2) с разрывом холодного спая термопары.

Для измерения малой разности температуры часто используется термобатарея, состоящая из нескольких последовательно соединенных термопар. Такая термобатарея позволяет повысить точность измерения в результате увеличения выходного сигнала во столько раз, сколько термопар в термобатарее.

Термо-ЭДС в термопарной цепи можно измерить милливольтметром по методу непосредственной оценки и потенциометром по методу сравнения.

Электрические термометры сопротивления основаны на температурной зависимости электрического сопротивления термометрического вещества и широко применяются для измерения температуры от -260°С до +750°С, а в отдельных случаях до +1000°С. Чувствительным элементом термометра является терморезисторный преобразователь, который позволяет преобразовать изменение температуры (неэлектрической величины) в изменение сопротивления (электрической величины). Терморезистором может служить любой проводник с известной температурной зависимостью сопротивления. В качестве материала для терморезистора используют такие металлы как, платина, медь, никель, железо, вольфрам, молибден. Кроме них, в термометрах сопротивления могут быть использованы некоторые полупроводниковые материалы.

Достоинствами металлических термометров сопротивления являются высокая степень точности измерения температуры, возможность применения стандартной градуировочной шкалы во всем диапазоне измерения, электрическая форма выходного сигнала.

Чистая платина, для которой отношение сопротивления при 100°С к сопротивлению при 0°С составляет 1,3925, в наибольшей степени удовлетворяет основным требованиям по химической стойкости, стабильности и воспроизводимости физических свойств и занимает особое место в терморезисторах для измерения температуры. Платиновые термометры сопротивления используются для интерполяции Международной температурной шкалы в диапазоне от -259,34°С до +630,74°С. В этом диапазоне температур платиновый термометр сопротивления превосходит по точности измерения термоэлектрический термометр.

Недостатками термометров сопротивления являются невозможность измерения температуры в отдельной точке тела из-за значительных размеров его чувствительного элемента, необходимость постороннего источника электропитания для измерения электрического сопротивления, малое значение температурного коэффициента электрического сопротивления для металлических термометров сопротивления, которое требует для измерения небольших изменений сопротивления высокочувствительные и точные приборы.

7.1.2. Бесконтактное измерение температур с помощью пирометров излучения.

Пирометрами излучения или просто пирометрами называют приборы для измерения температуры тел по тепловому излучению. Измерение температуры тел пирометрами основано на использовании законов и свойств теплового излучения. Особенностью методов пирометрии является то, что информация об измеряемой температуре передается неконтактным способом. Ввиду этого удается избежать искажений температурного поля объекта измерений, так как не требуется непосредственного соприкосновения термоприемника с телом.

По принципу действия пирометры для локального измерения температуры делят на яркостные пирометры, цветовые пирометры, радиационные пирометры.

Основной величиной, воспринимаемой глазом исследователя или приемниками теплового излучения пирометров, является интенсивность или яркость излучения тела. Действие яркостных пирометров основано на использовании зависимости спектральной интенсивности излучения тела от температуры тела. Яркостные пирометры, используемые в видимой части спектра излучения, с регистрацией сигнала при помощи глаз исследователя, называются оптическими пирометрами. Оптические пирометры являются наиболее простыми в обслуживании и широко применяются для измерения температуры от 700°С до 6000°С.

Для измерения яркостной температуры в видимой части спектра широко используются оптические пирометры с исчезающей нитью переменного и постоянного накала. Яркостная температура тела измеряется путем сравнения спектральной интенсивности излучения измеряемого тела с интенсивностью излучения нити пирометрической лампы при одной и той же эффективной длине волны (эффективная длина волны находится внутри узкого конечного интервала длин волн, в котором происходит излучение тела). При этом яркостная температура нити лампы устанавливается градуировкой по абсолютно черному телу или по специальной температурной лампе.

Оптическая система пирометра позволяет создать изображение объекта измерения в плоскости нити пирометрической лампы. В момент достижения равенства спектральных интенсивностей излучения объекта измерения и нити лампы вершина нити исчезает на фоне свечения тела.

Принцип действия цветовых пирометров основан на использовании зависимости отношения интенсивностей излучения, измеренных в двух достаточно узких спектральных интервалах, от температуры излучающего тела. Название «цветовые пирометры» происходит из-за того, что в видимой части спектра изменение длины волны при фиксированной температуре тела сопровождается изменением его цвета. Цветовые пирометры применяются для автоматического измерения температур в диапазоне 700°С - 2880°С. Цветовые пирометры имеют более низкую чувствительность, чем яркостные, в особенности при высокой температуре, но при использовании цветовых пирометров поправки на температуру, связанные с отличием свойств реальных тел от свойств абсолютно черного тела, получаются меньшими, чем при использовании других пирометров.

Радиационные пирометры - это приборы для измерения температуры по интегральной интенсивности (яркости) излучения тела. Они используются для измерения температуры от 20°С до 3500°С. Эти приборы имеют меньшую чувствительность, чем яркостные и цветовые, но измерения радиационными методами технически более простые.

Радиационные пирометры состоят из телескопа, приемника интегрального излучения, вторичного прибора и вспомогательных устройств. Оптическая система телескопа концентрирует энергию излучения тела на приемник интегрального излучения, степень нагрева которого, т.е. температура, а, следовательно, и выходной сигнал пропорциональны падающей энергии излучения и определяют радиационную температуру тела. В качестве приемника излучения (чувствительного элемента) чаще всего используют термобатареи из нескольких последовательно соединенных термопар. Наряду с термобатареями в качестве приемников интегрального излучения могут быть использованы и другие теплочувствигельные элементы, например болометры, в которых излучение от объекта измерения нагревает чувствительный к температуре резистор. Изменение температуры резистора служит мерой радиационной температуры.

В качестве вторичных приборов, регистрирующих сигнал приемника излучения, используют показывающие самопишущие и регистрирующие приборы. Шкала вторичных приборов обычно градуируется в градусах радиационной температуры. Для исключения погрешностей, обусловленных нагревом корпуса пирометра (телескопа) из-за теплообмена его с окружающей средой и в результате поглощения излучения от объекта измерения. Телескопы радиационных пирометров могут быть снабжены различными системами температурной компенсации.

7.2. Измерение тепловых потоков.

Измерение тепловых потоков необходимо при исследовании рабочих процессов машин и аппаратов, при определении тепловых потерь и исследовании условий теплообмена поверхностей с потоками газа или жидкости.

Методы измерения тепловых потоков и реализующие их устройства чрезвычайно разнообразны. По принципу измерения теплового потока все методы можно разделить на 2 группы.

1. Энтальпийные методы.

С помощью энтальпийных методов плотность теплового потока определяется по изменению энтальпии воспринимающего тепло тела. В зависимости от способа фиксирования этого изменения энтальпийные методы подразделяются на калориметрический метод, электрометрический метод, метод, использующий энергию изменения агрегатного состояния вещества.

2. Методы, основанные на решении прямой задачи теплопроводности.

Прямая задача теплопроводности заключается в отыскании температуры тела, удовлетворяющей дифференциальному уравнению теплопроводности и условиям однозначности. В этих методах плотность теплового потока определяется по градиенту температуры на поверхности тела. Среди методов этой группы различают метод вспомогательной стенки, теплометрический метод с использованием поперечной составляющей потока, градиентный метод.

Методы, основанные на решении прямой задачи теплопроводности основаны на определении плотности теплового потока, пронизывающего исследуемый объект. Этот метод реализован на практике использованием батарейных термоэлектрических преобразователей теплового потока в электрический сигнал постоянного тока. Действие основано на использовании физической закономерности установления разности температур на стенке при пронизывании ее тепловым потоком. Оригинальность батарейного преобразователя теплового потока состоит в том, что стенка, на которой создается разность температур, и измеритель этой разности объединены в одном элементе. Это достигается за счет того, что преобразователь выполнен в виде так называемой вспомогательной стенки, состоящий из батареи дифференциальных термопар, которые включены параллельно по измеряемому тепловому потоку и последовательно по генерируемому электрическому сигналу.

Батарея термоэлементов изготовляется по гальванической технологии. Единичный гальванический термоэлемент представляет собой комбинацию восходящей и нисходящей ветвей термопар, причем, восходящая ветвь – основной проводник, а нисходящая – гальванически покрытый парным термоэлектродным материалом участок этого же проводника. Пространство между ними заполнено электроизоляционным компаундом. Конструктивно преобразователь состоит из корпуса, внутри которого при помощи компаунда крепится батарея термоэлементов и отводящие проводники, выведенные из корпуса через два отверстия.

Рис. 7.1. Схема батареи гальванических термоэлементов:

    основная термоэлектрическая проволока, 2 - гальваническое покрытие, 3 - заливочный компаунд; 4 - каркасная лента.

Измеряемый тепловой поток определяется по формуле

где Q – тепловой поток от объекта Вт,

k – градуировочный коэффициент Вт/мВ,

e – термоэдс, генерируемая преобразователем мВ.

Такие батарейные преобразователи могут быть использованы в качестве высокочувствительных теплометрических элементов (тепломеров) при различных тепловых измерениях.

Литература.

    Гортышев Ю.Ф. Теория и техника теплофизического эксперимента. – М., «Энергоатомиздат», 1985.

    Тепло- и массообмен. Теплотехнический эксперимент. Справочник под ред. Григорьева В.А. – М., «Энергоатомиздат», 1982.

    Иванова Г.М. Теплотехнические измерения и приборы.- М., «Энергоатомиздат», 1984.

    Приборы для теплофизических измерений. Каталог. Институт проблем энергосбережения АН УССР. Составители Геращенко О.А., Грищенко Т.Г. – Киев, «Час», 1991.

    http://www.kobold.com/

    В состав автомобиля входит четыре системы: охлаждения, смазки, топливная и зажигания. Выход из строя каждой из них в отдельности приводит к полному выходу из строя всего автомобиля. Если поломка найдена, ее нужно устранить, и чем раньше, тем лучше, поскольку ни одна из систем не выходит из строя сразу. Этому, как правило, предшествует множество «симптомов».

    В этой статье мы более подробно остановимся на системе зажигания. Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в распределителе. В момент, когда размыкаются эти контакты, в катушке образуется индукционный ток, который подается посредством высоковольтных проводов на свечи.

    Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

    Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо - плюсы во всех сферах эксплуатации.

    Но не все так гладко, как хотелось бы. Например, бывают случаи, когда выходит из строя коммутатор. Если замена контактного блока обойдется в 150-200 рублей при хорошем качестве, то здесь цены в 3-4 раза больше. Помимо прочего, замена контактного зажигания на бесконтактное влечет за собой и замену высоковольтных проводов на силиконовые, если они не были установлены ранее. Конечно, можно оставить и стандартные, но тогда возможны пробои, а значит - перебои в зажигании и во всей работе двигателя.

    Теперь немного о самой системе. Питание постоянно подается на контакты распределителя зажигания, через которые оно идет к первичной (малой) обмотке катушки. В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения. Он-то и подается на свечи зажигания.

    Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Конечно же, после замены самого распределителя нужно будет выставить момент зажигания, но, во-первых, это не слишком сложно, а во-вторых - можно изначально выставить бегунок в удобное положение и запомнить, чтобы потом аналогично установить коммутатор. А еще стоит отключить аккумулятор от цепи, чтобы не получить ожогов или прочих травм.

    На автомобилях ВАЗ 2107 применяются два типа зажигания: устаревшая контактная и современная бесконтактная система. Последний тип начал применяться на «классике» ВАЗа относительно недавно, в основном на моделях, оборудованных инжекторными двигателями. Однако преимущества бесконтактной схемы в полной мере раскрываются и на карбюраторных моторах ВАЗ.

    Контактная система зажигания ВАЗ 2107

    Классическая контактная система, применяемая на ВАЗ, состоит из 6 компонентов:


    Выключатель зажигания совмещает в себе две детали: замок с противоугонным устройством и контактную часть. Выключатель крепится двумя винтами слева от рулевой колонки.

    Катушка зажигания является повышающим трансформатором, преобразующим ток низкого напряжения в высокое напряжение, необходимое для получения искры в свечах зажигания. Первичная и вторичная обмотки катушки помещены в корпус и залиты трансформаторным маслом, обеспечивающим их охлаждение во время работы.

    Распределитель зажигания – наиболее сложный элемент системы, состоящий из множества деталей. Функция распределителя – преобразования постоянного низкого напряжения в высокое импульсное с распределением импульсов по свечам зажигания. В конструкцию распределителя входят прерыватель, центробежный и вакуумный регуляторы опережения зажигания, подвижная пластина, крышка, корпус и прочие детали.

    Свечи зажигания воспламеняют бензино-воздушную смесь в цилиндрах двигателя при помощи искровых разрядов. Во время эксплуатации сечей необходимо контролировать зазор между электродами и исправность изоляторов.

    Бесконтактная система зажигания ВАЗ 2107

    Название «бесконтактной» электронная схема зажигания ВАЗ 2107 получила потому, что размыкание/замыкание цепи производится не контактами прерывателя, а электронным коммутатором, управляющим работой выходного полупроводникового транзистора. Комплекты электронной (бесконтактной) системы зажигания ВАЗ 2107 на карбюраторных и инжекторных двигателях несколько отличаются, поэтому существует ошибочное мнение, что электронное и бесконтактное зажигание являются разными системами. В реальности принцип работы электронных систем зажигания одинаков.

    Как и контактная система зажигания, электронное зажигание включает в себя свечи, провода, катушку зажигания и трамблер. Разница лишь в наличии коммутатора, который управляет подачей высокого напряжения к свечам зажигания.

    Бесконтактная система отличается повышенной надежностью благодаря отсутствию контактов, нуждающихся в очистке и регулировке зазора. Полупроводниковый транзистор обеспечивает стабильное распределение искры по цилиндрам. Благодаря высокому напряжению разряда искры (25-30 вместо 9-12 кВ) происходит более полное сгорание рабочей смеси в цилиндрах, что улучшает динамические характеристики двигателя и показатели экологической безопасности выхлопа. При малом напряжении аккумулятора напряжение в свечах остается достаточно высоким для воспламенения смеси, что облегчает запуск двигателя в сильный мороз.

    Регулировка зажигания


    В домашних условиях выставить угол опережения зажигания можно «на слух», выставив угол опережения так, чтоб в данном положении обороты прогретого двигателя были наиболее высокими и ровными. Во время движения на скорости 50 км/ч на четвертой передаче при полном нажатии педали газа должен возникать звук «детонации», до тех пор, пока скорость не увеличится на 3-5 км/ч. Если звук слышен дольше, угол опережения необходимо уменьшить.

    В условиях автосервиса регулировка зажигания производится при помощи специализированного оборудования.

    Катушка системы зажигания – очень важный элемент, основная задача которого заключается в преобразовании напряжения из низковольтного в высоковольтное. Данное напряжение поступает непосредственно из аккумуляторной батареи или генератора. Катушка контактной системы зажигания довольно сильно отличается от аналогичного элемента в бесконтактной системе.

    Катушка контактной системы зажигания

    В контактной системе зажигания катушка состоит из нескольких важнейших элементов: сердечника, первичной и вторичной обмотки, картонной трубки, прерывателя и добавочного резистора. Особенность первичной обмотки по сравнению со вторичной – меньшее число витков медного провода (до 400). Во вторичной обмотке катушки их число может достигать 25 тысяч, но при этом их диаметр в разы меньше. Все медные провода в катушке зажигания хорошо изолированы. Сердечник катушки уменьшает образование вихревых токов, он состоит из полосок трансформаторной стали, которые также друг от друга хорошо изолированы. Нижняя часть сердечника устанавливается в специальный фарфоровый изолятор. Сейчас нет надобности перечислять принцип работы катушки подробно, достаточно лишь упомянуть, что в контактной системе такой элемент (преобразователь напряжения) имеет ключевое значение.

    Катушка бесконтактной системы зажигания

    В бесконтактной системе зажигания катушка выполняет точно такие же функции. И отличие проявляется лишь в непосредственном строении элемента, преобразующего напряжение. Также стоит отметить, что электронный коммутатор осуществляет прерывание цепи питания первичной катушки. Что касается самой системы зажигания, то бесконтактная значительно лучше по многим параметрам: возможность пуска и работы двигателя при низкой температуре, в цилиндрах не замечается нарушения равномерности распределения искры, нет вибрации. Все эти преимущества дает сама катушка в бесконтактной системе зажигания.

    Сравнение катушек

    Когда речь заходит о признаках отличия катушки контактной системы зажигания от бесконтактной, все сразу обращают внимание на маркировку. Действительно, по ней можно сразу узнать, для какой системы используется катушка. Однако нас интересует именно внешние и технические различия катушек, поэтому мы приведем отличия именно по этим параметрам:

    • Катушка в контактной системе зажигания имеет большее количество витков в первичной обмотке. Это изменение напрямую влияет на сопротивление и количество проходящего тока. Кроме того, ограничение тока на контактах связано с безопасностью (чтобы контакты не обгорали).
    • Контакты прерывателя катушки в бесконтактной системе зажигания не загрязняются и не обгорают. Такая надежность позволяет получить одно важное преимущество: установка момента зажигания не занимает много времени.
    • Катушка в бесконтактной системе зажигания мощнее и надежнее. Это преимущество связано непосредственно с тем, что самая бесконтактная система зажигания – более надежный вариант. Поэтому в такой системе катушка и дает большую мощность двигателя.

    Выводы сайт

    1. У них разная маркировка, обозначающая различие между двумя катушками.
    2. В контактной системе катушка имеет большее количество витков.
    3. Контакты прерывателя катушки бесконтактной системы надежней.
    4. Сама катушка в бесконтактной системе зажигания дает большую мощность.