» » Схема регулируемого стабилизатора напряжения 0 30в. Простейший лабораторный блок питания для начинающего

Схема регулируемого стабилизатора напряжения 0 30в. Простейший лабораторный блок питания для начинающего

Пошаговая инструкция по созданию лабораторного блока питания - схема, необходимые детали, советы по монтажу, видео.


Лабораторный блок питания - это устройство, формирующее необходимое напряжение и ток для дальнейшего использования при подключении к сети. В большинстве случае он преобразует переменный ток сети в постоянный. Такой прибор есть у каждого радиолюбителя и сегодня мы рассмотрим, как создать его своими руками, что для этого понадобится и какие нюансы важно учесть при монтаже.

Преимущества лабораторного блока питания


Сначала отметим особенности БП, который мы собираемся изготовить:
  1. Выходное напряжение регулируется в пределах 0–30 В.
  2. Защита от перегрузки и неправильного подключения.
  3. Низкий уровень пульсаций (постоянный ток на выходе лабораторного блока питания мало чем отличается от постоянного тока батареек и аккумуляторов).
  4. Возможность установки предела по силе тока до 3 Ампер, после которого БП будет уходить в защиту (очень удобная функция).
  5. На блоке питания путем короткого замыкания (КЗ) «крокодилов» устанавливается максимально допустимый ток (ограничение по току, которое вы выставляете переменным резистором по амперметру). Следовательно - перегрузки не страшны, поскольку в этом случае сработает светодиодный индикатор, обозначающий превышение установленного уровня тока.

Лабораторный блок питания - схема


Схема лабораторного блока питания


Теперь рассмотрим по порядку схему. Она есть в Сети уже давно. Поговорим отдельно о некоторых нюансах.

Итак, цифры в кружочках - это контакты. К ним надо припаивать провода, которые пойдут на радиоэлементы.

  • Смотрите также, как сделать
Обозначение кружочков на схеме:
  • 1 и 2 - к трансформатору.
  • 3 (+) и 4 (-) - выход постоянного тока.
  • 5, 10 и 12 - на P1.
  • 6, 11 и 13 - на P2.
  • 7 (К), 8 (Б), 9 (Э) - к транзистору Q4.
На входы 1 и 2 от сетевого трансформатора подается переменное напряжение 24 В. Трансформатор должен быть габаритным, чтобы в нагрузку он легко мог выдавать до 3 А (его можно купить или намотать).

Диоды D1…D4 соединены в диодный мост. Можно взять 1N5401…1N5408, какие-нибудь другие диоды и даже готовые диодный мосты, которые могут выдержать прямой ток до 3 А и выше. Мы использовали диоды таблетки КД213.


Микросхемы U1, U2, U3 представляют собой операционные усилители. Их расположение выводов, если смотреть сверху:


На восьмом выводе написано «NC» - это значит, что его не надо цеплять ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.
  • Смотрите также пошаговую инструкцию по созданию
Транзистор Q1 марки ВС547 или BC548. Ниже представлена его распиновка:


Схема распиновки транзистора Q1


Транзистор Q2 лучше взять советский КТ961А. Но не забудьте его поставить на радиатор


Транзистор Q3 марки BC557 или BC327:


Транзистор Q4 исключительно КТ827!


Вот его распиновка:


Схема распиновки транзистора Q4


Переменные резисторы в этой схеме ввести в замешательство - это. Они здесь обозначены следующим образом:

Схема ввода переменных резисторов


У нас они обозначаются так:


Приведём также список компонентов:
  • R1 = 2,2 кОм 1W
  • R2 = 82 Ом 1/4W
  • R3 = 220 Ом 1/4W
  • R4 = 4,7 кОм 1/4W
  • R5, R6, R13, R20, R21 = 10 кОм 1/4W
  • R7 = 0,47 Ом 5W
  • R8, R11 = 27 кОм 1/4W
  • R9, R19 = 2,2 кОм 1/4W
  • R10 = 270 кОм 1/4W
  • R12, R18 = 56кОм 1/4W
  • R14 = 1,5 кОм 1/4W
  • R15, R16 = 1 кОм 1/4W
  • R17 = 33 Ом 1/4W
  • R22 = 3,9 кОм 1/4W
  • RV1 = 100K многооборотный подстроечный резистор
  • P1, P2 = 10KOhm линейный потенциометр
  • C1 = 3300 uF/50V электролитический
  • C2, C3 = 47uF/50V электролитический
  • C4 = 100нФ
  • C5 = 200нФ
  • C6 = 100пФ керамический
  • C7 = 10uF/50V электролитический
  • C8 = 330пФ керамический
  • C9 = 100пФ керамический
  • D1, D2, D3, D4 = 1N5401…1N5408
  • D5, D6 = 1N4148
  • D7, D8 = стабилитроны на 5,6V
  • D9, D10 = 1N4148
  • D11 = 1N4001 диод 1A
  • Q1 = BC548 или BC547
  • Q2 = КТ961А
  • Q3 = BC557 или BC327
  • Q4 = КТ 827А
  • U1, U2, U3 = TL081, операционный усилитель
  • D12 = светодиод

Как сделать лабораторный блок питания своими руками - печатная плата и пошаговая сборка

Теперь рассмотрим пошагово сборку лабораторного блока питания своими руками. Трансформатор у нас есть уже готовый от усилителя. Напряжение на его выходах составило порядка 22 В. Подготавливаем корпус для БП.


Делаем с помощью ЛУТа печатную плату:


Схема печатной платы для лабораторного блока питания


Протравливаем её:


Смываем тонер:


Как самому изготовить полноценный блок питания с диапазоном регулируемого напряжения 2,5-24 вольта, да очень просто, повторить может каждый не имея за плечами радиолюбительского опыта.

Делать будем из старого компьютерного блока питания, ТХ или АТХ без разницы, благо, за годы PC Эры у каждого дома уже накопилось достаточно количество старого компьютерного железа и БП наверняка тоже там есть, поэтому себестоимость самоделки будет незначительной, а для некоторых мастеров равно нулю рублей.

Мне достался для переделки вот какой АТ блок.


Чем мощнее будете использовать БП тем лучше результат, мой донор всего 250W с 10 амперами на шине +12v, а на деле при нагрузке всего 4 А он уже не справляется, происходит полная просадка выходного напряжения.

Смотрите что написано на корпусе.


Поэтому смотрите сами, какой ток вы планируете получать с вашего регулируемого БП, такой потенциал донора и закладывайте сразу.

Вариантов доработки стандартного компьютерного БП множество, но все они основаны на изменении в обвязке микросхемы IC - TL494CN (её аналоги DBL494, КА7500, IR3М02, А494, МВ3759, М1114ЕУ, МPC494C и т.д.).


Рис №0 Распиновка микросхемы TL494CN и аналогов.

Посмотрим несколько вариантов исполнения схем компьютерных БП, возможно одна из них окажется ваша и разбираться с обвязкой станет намного проще.

Схема №1.

Приступим к работе.
Для начала необходимо разобрать корпус БП, выкручиваем четыре болта, снимаем крышку и смотрим внутрь.


Ищем на плате микросхему из списка выше, если таковой не окажется, тогда можно поискать вариант доработки в интернете под вашу IС.

В моем случае на плате была обнаружена микросхема KA7500, значит можно приступать к изучению обвязки и расположению ненужных нам деталей, которые необходимо удалить.


Для удобства работы, сначала полностью открутим всю плату и вынем из корпуса.


На фото разъём питания 220v.

Отсоединим питание и вентилятор, выпаиваем или выкусываем выходные провода, чтобы не мешали нам разбираться в схеме, оставим только необходимые, один желтый (+12v), черный (общий) и зеленый* (пуск ON) если есть такой.


В моём АТ блоке зеленого провода нет, поэтому он запускается сразу при включении в розетку. Если блок АТХ, то в нем должен быть зеленый провод, его необходимо припаять на "общий", а если пожелаете сделать отдельную кнопку включения на корпусе, то тогда просто поставьте выключатель в разрыв этого провода.


Теперь надо посмотреть на сколько вольт стоят выходные большие конденсаторы, если на них написано меньше 30v , то надо заменить их на аналогичные, только с рабочим напряжение не меньше 30 вольт.


На фото - черные конденсаторы как вариант замены для синего.

Делается это потому, что наш доработанный блок будет выдавать не +12 вольт, а до +24 вольт, и без замены конденсаторы просто взорвутся при первом испытании на 24v, через несколько минут работы. При подборе нового электролита емкость уменьшать не желательно, увеличивать всегда рекомендуется.

Самая ответственная часть работы.
Будем удалять все лишнее в обвязке IC494, и припаивать другие номиналы деталей, чтобы в результате получилась вот такая обвязка (Рис. №1).


Рис. №1 Изменение в обвязке микросхемы IC 494 (схема доработки).

Нам будут нужны только эти ножки микросхемы №1, 2, 3, 4, 15 и 16, на остальные внимание не обращать.


Рис. №2 Вариант доработки на примере схемы №1

Расшифровка обозначений.


Делать надо примерно так , находим ножку №1 (где стоит точка на корпусе) микросхемы и изучаем, что к ней присоединено, все цепи необходимо удалить, отсоединить. В зависимости от того как у вас в конкретной модификации платы будут расположены дорожки и впаяны детали, выбирается оптимальный вариант доработки, это может быть выпаивание и приподнятие одной ножки детали (разрывая цепь) или проще будет перерезать дорожку ножом. Определившись с планом действий, начинаем процесс переделки по схеме доработки.




На фото - замена резисторов на нужный номинал.


На фото - приподнятием ножек ненужных деталей, разрываем цепи.

Некоторые резисторы, которые уже впаяны в схему обвязки могут подойти без их замены, например, нам необходимо поставить резистор на R=2.7k с подключением к "общему", но там уже стоит R=3k подключенный к "общему", это нас вполне устраивает и мы его оставляем там без изменений (пример на Рис. №2, зеленые резисторы не меняются).






На фото - перерезанные дорожки и добавленные новые перемычки, старые номиналы записываем маркером, может понадобится восстановить все обратно.

Таким образом просматриваем и переделываем все цепи на шести ножках микросхемы.

Это был самой сложный пункт в переделке.

Делаем регуляторы напряжения и тока.


Берем переменные резисторы на 22к (регулятор напряжения) и 330Ом (регулятор тока), припаиваем к ним по два 15см провода, другие концы впаиваем на плату согласно схеме (Рис. №1). Устанавливаем на лицевую панель.

Контроль напряжения и тока.
Для контроля нам понадобятся вольтметр (0-30v) и амперметр (0-6А).


Эти приборы можно приобрести в Китайских интернет магазинах по самой выгодной цене, мой вольтметр мне обошелся с доставкой всего 60 рублей. (Вольтметр: )


Амперметр я использовал свой, из старых запасов СССР.

ВАЖНО - внутри прибора есть резистор Тока (датчик Тока), необходимый нам по схеме (Рис. №1), поэтому, если будете использовать амперметр, то резистор Тока ставить дополнительно не надо, без амперметра ставить надо. Обычно RТока делается самодельный, на 2-х ватное сопротивление МЛТ наматывается провод D=0,5-0,6 мм, виток к витку на всю длину, концы припаяем к выводам сопротивления, вот и все.

Корпус прибора каждый сделает под себя.
Можно оставить полностью металлический, прорезав отверстия под регуляторы и приборы контроля. Я использовал обрезки ламината, их легче сверлить и выпиливать.

Доброго времени суток форумчане и гости сайта Радиосхемы ! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, . В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А - минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом - ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие - раньше ограничить ток.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге - смотрите далее.

На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Несколько слов о схеме. Это стабилизированный блок питания с регулировкой выходного напряжения и ограничением тока. Схематические особенности позволяют скинуть минимальную грань выходного напряжения до 0,6 Вольт, а минимальных выходной ток в районе 10мА.

Не смотря на простату конструкции, данному блоку питания уступают даже хорошие лабораторные блоки питания со стоимостью 5-6 тысяч рублей!. Максимальный выходной ток схемы 14Ампер, максимальное выходное напряжение до 40 Вольт - больше не стоит.

Довольно плавное ограничение тока и регулировка напряжения. Блок имеет также фиксированную защиту от коротких замыканий, к стати - ток защиту тоже можно выставить (этой функции лишены почти все промышленные образцы) к примеру, если вам нужно, чтобы защита срабатывала при токах до 1 Ампер - то всего лишь нужно настроить такой ток помощью регулятора настройки тока срабатывания. Максимальный ток - 14Ампер, но и это не предел.











В качестве датчика тока задействовал несколько резисторов 5 ватт 0,39Ом подключенных параллельно, но их номинал можно менять, исходя от нужного тока защиты, к примеру - если планируете блок питания с максимальным током не более 1 Ампер, то номинал этого резистора в районе 1Ом при мощности 3Ватт.

При коротких замыканиях падение напряжения на датчике тока достаточно для срабатывания транзистора BD140, При его открывании срабатывает также нижний транзистор - BD139, через открытый переход которого поступает питание на обмотку реле, в следствии чего, реле срабатывает и размыкается рабочий контакт (на выходе схемы). Схема в таком состоянии может находится сколько угодно времени. Вместе с защитой срабатывает также индикатор защиты. Для того, чтобы снять блок с защиты нужно нажать и опустить кнопку S2 по схеме.

Реле защиты с катушкой 24 Вольт с допустимым током 16-20 и более Ампер.

Силовые ключи в моем случае любимые КТ8101 установленные на теплоотвод (дополнительно изолировать транзисторы не нужно, поскольку коллекторы ключей общие). Заменить транзисторы можно на 2SC5200 - полный импортный аналог или на КТ819 с индексом ГМ (железные), при желании также можно задействовать - КТ803, КТ808, КТ805 (в железных корпусах), но максимальный ток отдачи будет не более 8-10 Ампер. Если блок нужен с током не более 5 Ампер, то можно убрать один из силовых транзисторов.

Маломощные транзисторы типа BD139 можно заменить на полный аналог - KT815Г,(можно также - KT817, 805), BD140 - на КТ816Г (можно также КТ814).
Маломощные транзисторы устанавливать на теплоотводы не нужно.

По сути - представлена только схема управления(регулировки) и защиты (рабочий узел). В качестве блока питания я задействовал доработанные компьютерные блоки питания (последовательно соединенные), но можно любой сетевой трансформатор с мощностью 300-400 ватт, во вторичной обмоткой 30-40 Вольт, ток обмотки 10-15 Ампер - это в идеале, но можно трансформаторы и меньшей мощности.

Диодный мост - любой, с током не менее 15 Ампер, напряжение не важно. Можно использовать готовые мосты, стоят они не более 100 руб.

За 2 месяца было собрано и продано свыше 10 таких блоков питания - никаких жалоб. Для себя собрал точно такой БП, и как только я его не мучил - неубиваемый, мощный и очень удобный для любых дел.

Если есть желающие стать владельцем такого БП, то могу сделать под заказ, свяжитесь со мной по адресу Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. , остальное расскажут видео уроки по сборке.

Эта статья предназначена для людей, которые быстро могут отличить транзистор от диода, знают для чего нужен паяльник и за какую сторону его держать, ну и наконец дошли до понимания, что без лабораторного блока питания их жизнь больше не имеет смысла…

Данную схему нам прислал человек под ником: Loogin.

Все изображения уменьшены в размере, для просмотра в полном размере кликните левой клавишей мышки на изображение

Здесь я постараюсь максимально подробно - шаг за шагом рассказать как это сделать с минимальными затратами. Наверняка у каждого после апгрейдов домашнего железа валяется под ногами как минимум один БП. Конечно кое-что придётся докупить, но эти жертвы будут небольшими и скорее всего оправданы конечным результатом – это, как правило около 22В и 14А потолочных. Лично я вложился в $10. Конечно, если собирать всё с «нулевой» позиции, то надо быть готовым выложить ещё около $10-15 для покупки самого БП, проводов, потенциометров, ручек и прочей рассыпухи. Но, обычно – такого хлама у всех навалом. Есть ещё нюанс – немного придётся потрудиться руками, поэтому они должны быть «без смещения» J и нечто подобное может и у Вас получиться:

Для начала нужно любыми способами раздобыть ненужный но исправный БП АТХ мощностью >250W. Одна из наиболее популярных схем – это Power Master FA-5-2:


Подробную последовательность действий я опишу именно для этой схемы, но все они справедливы и для других вариантов.
Итак, на первом этапе нужно подготовить БП-донор:

  1. Удаляем диод D29 (можно просто одну ногу поднять)
  2. Удаляем перемычку J13, находим в схеме и на плате (можно кусачками)
  3. Перемычка PS ON на землю должна стоять.
  4. Включаем ПБ только на короткое время, так как напряжение на входах будет максимальное (примерно 20-24В) Собственно это и хотим увидеть...

Не забываем про выходные электролиты, рассчитанные на 16В. Возможно они немного нагреются. Учитывая, что они скорее всего «набухшие», их все равно придется отправить в болото, не жалко. Провода уберите, они мешают, а использоваться будут только GND и +12В их потом назад припаяете.


5. Удаляем 3.3х вольтовую часть: R32, Q5, R35, R34, IC2, C22, C21:


6. Удаляем 5В: сборку шоттки HS2, C17, C18, R28, можно и "типа дроссель" L5
7. Удаляем -12В -5В: D13-D16, D17, C20, R30, C19, R29


8. Меняем плохие: заменить С11, С12 (желательно на большую ёмкость С11 - 1000uF, C12 - 470uF)
9. Меняем несоответствующие компоненты: С16 (желательно на 3300uF х 35V как у меня, ну хотя бы 2200uF x 35V обязательно!) и резистор R27 советую его заменить на более мощный, например 2Вт и сопротивление взять 360-560 Ом.


Смотрим на мою плату и повторяем:

10. Убираем всё с ног TL494 1,2,3 для этого удаляем резисторы: R49-51 (освобождаем 1ю ногу), R52-54 (... 2ю ногу), С26, J11 (...3ю ногу)
11. Не знаю почему, но R38 у меня был перерублен кем то J рекомендую Вам его тоже перерубить. Он участвует в обратной связи по напряжению и стоит параллельно R37-му. Собственно R37 тоже можно перерубить.


12. отделяем 15ю и 16ю ноги микросхемы от "всех остальных": для этого делаем 3 прореза существующих дорожек а к 14й ноге восстанавливаем связь чёрной перемычкой, как показано на моем фото.


13. Теперь подпаиваем шлейф для платы регулятора в точки согласно схемы, я использовал отверстия от выпаянных резисторов, но к 14й и 15й пришлось содрать лак и просверлить отверстия, на фото вверху.
14. Жила шлайфа №7 (питание регулятора) можно взять от питания +17В ТЛ-ки, в районе перемычки, точнее от неё J10. Просверлить отверстие в дорожку, расчистить лак и туда! Сверлить лучше со стороны печати.


Это всё было, как говорится: «минимальная доработка», чтобы сэкономить время. Если время не критично, то можно просто привести схему в следующее состояние:


Ещё я посоветовал бы поменять кондёры высоковольтные на входе (С1, С2) Они маленькой ёмкости и наверняка уже изрядно подсохли. Туда нормально станут 680uF x 200V. Плюс неплохо дроссель групповой стабилизации L3 немного переделать, либо использовать 5ти вольтные обмотки, соединив их последовательно, либо вообще убрать всё и намотать около 30ти витков новым эмальпроводом общим сечением 3-4мм 2 .

Для питания вентилятора нужно «подготовить» ему 12В. Я выкрутился таким образом: Там где раньше стоял полевой транзистор для формирования 3,3В можно «поселить» 12ти вольтную КРЕН-ку (КРЕН8Б или 7812 импортный аналог). Конечно там без резки дорожек и добавки проводов не обойтись. В конечном итоге получилось в общем даже и «ничего»:


На фото видно, как всё гармонично ужилось в новом качестве, даже разъём вентилятора недурно уместился и перемотанный дроссель получился весьма неплох.

Теперь регулятор. Чтобы упростить задачу с разными там шунтами, поступаем так: покупаем готовые амперметр и вольтметр в Китае, либо на местном рынке (наверняка там их можно найти у перекупщиков). Можно купить совмещённый. Но, надо не забывать, что потолок по току у них 10A! Поэтому в схеме регулятора придется ограничивать предельный ток на этой отметке. Здесь я опишу вариант для отдельных приборов без регулировки тока с ограничением по максимуму 10A. Схема регулятора:


Чтобы сделать регулировку ограничения тока, надо вместо R7 и R8 поставить переменный резистор 10кОм, также как R9. Тогда можно будет использовать всемерялку. Также стоит обратить внимание на R5. В данном случае его сопротивление 5,6кОм, потому что у нашего амперметра шунт 50mΩ. Для других вариантов R5=280/R шунта. Поскольку мы взяли вольтметр один из самых дешевых, поэтому его немного надо доработать, чтобы он мог измерять напряжения от 0В, а не от 4,5В как это сделал производитель. Вся переделка заключается в разделении цепей питания и измерения посредствам удаления диода D1. Туда впаиваем провод – это и есть +V питания. Измеряемая часть осталась без изменений.


Плата регулятора с расположением элементов показана ниже. Изображение для лазерно-утюжного метода изготовления идёт отдельным файлом Regulator.bmp с разрешением 300dpi. Также в архиве есть и файлы для редактирования в EAGLE. Последнюю офф. версию можно скачать тут: www.cadsoftusa.com. В интернете имеется много информации о этом редакторе.





Потом прикручиваем готовую плату у потолку корпуса через изолирующие проставки, например нарезанные из отработанной палочки чупа-чупса высотой по 5-6 мм. Ну и не забыть проделать предварительно все необходимые вырезы для измерительных и прочих приборов.



Предварительно собираем и тестируем под нагрузкой:



Как раз и смотрим на соответствие показаний различных китайских девайсов. А ниже уже с «нормальной» нагрузкой. Это автомобильная лампа главного света. Как видно - без малого 75Вт имеется. При этом не забываем засунуть туда осциллограф, и увидеть пульсации около 50мВ. Если будет больше, то вспоминаем про «большие» электролиты по высокой стороне ёмкостью по 220uF и тут же забываем после замены на нормальные ёмкостью 680uF например.


В принципе на этом можно и остановиться, но чтобы придать более приятный вид прибору, ну чтобы он не выглядел самоделкой на 100%, мы делаем следующее: выходим из своей берлоги, поднимаемся на этаж выше и с первой попавшейся двери снимаем бесполезную табличку.

Как видим, до нас тут кто-то уже побывал


В общем по тихому делаем это грязное дело и начинаем работать напильниками разных фасонов и параллельно осваивать AutoCad.



Потом на наждаке затачиваем кусок трёхчетвертной трубы и из достаточно мягкой резины нужной толщины вырубываем и суперклеем лепим ножки.



В итоге получаем достаточно приличный прибор:


Следует отметить несколько моментов. Самое главное – это не забывать, что GND блока питания и выходной цепи не должны быть связаны , поэтому нужно исключить связь между корпусом и GND БП. Для удобства желательно вынести предохранитель, как на моём фото. Ну и постараться максимально восстановить недостающие элементы входного фильтра, их скорее всего нет вообще у исходника.

Вот ещё пара вариантов подобных приборов:


Слева 2х этажный корпус ATX с всемерялкой, а справа сильно переделанный старый AT корпус от компьютера.