» » Принцип стирлинга. Двигатель Стирлинга – принцип работы

Принцип стирлинга. Двигатель Стирлинга – принцип работы

Современное автомобилестроение вышло на такой уровень развития, при котором без фундаментальных научных исследований практически невозможно достигнуть кардинальных улучшений в конструкции традиционных моторов внутреннего сгорания. Такая ситуация вынуждает конструкторов обратить внимание на альтернативные проекты силовых установок . Одни инженерные центры сосредоточили свои силы на создании и адаптации к серийному выпуску гибридных и электрических моделей, другие автоконцерны вкладывают средства в разработку двигателей на топливе из возобновляемых источников (например, биодизель на рапсовом масле). Существуют и другие проекты силовых агрегатов, которые в перспективе могут стать новым стандартным движителем для транспортных средств.

Среди возможных источников механической энергии для автомобилей будущего следует назвать двигатель внешнего сгорания, который был изобретен в середине XIX века шотландцем Робертом Стирлингом в качестве тепловой расширительной машины.

Схема работы

Двигатель Стирлинга преобразует тепловую энергию, подводимую извне, в полезную механическую работу за счет изменения температуры рабочего тела (газа или жидкости), циркулирующего в замкнутом объеме.

В общем виде схема работы устройства выглядит следующим образом: в нижней части двигателя рабочее вещество (например, воздух) нагревается и, увеличиваясь в объеме, выталкивает поршень вверх. Горячий воздух проникает в верхнюю часть мотора, где охлаждается радиатором. Давление рабочего тела снижается, поршень опускается для следующего цикла. При этом система герметична и рабочее вещество не расходуется, а только перемещается внутри цилиндра.

Существует несколько вариантов конструкции силовых агрегатов, использующих принцип Стирлинга.

Стирлинг модификации «Альфа»

Двигатель состоит из двух раздельных силовых поршней (горячего и холодного), каждый из которых находится в своем цилиндре. К цилиндру с горячим поршнем подводится тепло, а холодный цилиндр расположен в охлаждающем теплообменнике.

Стирлинг модификации «Бета»

Цилиндр, в котором находится поршень, нагревается с одной стороны и охлаждается с противоположного конца. В цилиндре двигается силовой поршень и вытеснитель, предназначенный для изменения объема рабочего газа. Обратное перемещение остывшего рабочего вещества в горячую полость двигателя выполняет регенератор.

Стирлинг модификации «Гамма»

Конструкция состоит из двух цилиндров. Первый - полностью холодный, в котором движется силовой поршень, а второй, горячий с одной стороны и холодный с другой, служит для перемещения вытеснителя. Регенератор для циркуляции холодного газа может быть общим для обоих цилиндров или входить в конструкцию вытеснителя.

Преимущества двигателя Стирлинга

Как и большинство моторов внешнего сгорания, Стирлингу присуща многотопливность : двигатель работает от перепада температуры, независимо от причин его вызвавших.

Интересный факт! Однажды была продемонстрирована установка, которая функционировала на двадцати вариантах топлива. Без остановки двигателя во внешнюю камеру сгорания подавались бензин, дизельное топливо, метан, сырая нефть и растительное масло - силовой агрегат продолжал устойчиво работать.

Двигатель обладает простотой конструкции и не требует дополнительных систем и навесного оборудования (ГРМ, стартер, коробка передач).

Особенности устройства гарантируют длительный эксплуатационный ресурс: более ста тысяч часов непрерывной работы.

Двигатель Стирлинга бесшумен , так как в цилиндрах не происходит детонация и отсутствует необходимость вывода отработанных газов. Модификация «Бета», оснащенная ромбическим кривошипно-шатунным механизмом, является идеально сбалансированной системой, которая в процессе работы не имеет вибраций.

В цилиндрах двигателя не происходят процессы, которые могут оказать негативное воздействие на окружающую среду. При выборе подходящего источника тепла (например, солнечная энергия) Стирлинг может быть абсолютно экологически чистым силовым агрегатом.

Недостатки конструкции Стирлинга

При всем наборе положительных свойств немедленное массовое применение двигателей Стирлинга невозможно по следующим причинам:

Основная проблема заключается в материалоемкости конструкции. Охлаждение рабочего тела требует наличия радиаторов большого объема, что существенно увеличивает размеры и металлоемкость изготовления установки.

Нынешний технологический уровень позволит двигателю Стирлинга сравниться по характеристикам с современными бензиновыми моторами только за счет применения сложных видов рабочего тела (гелий или водород), находящихся под давлением более ста атмосфер. Этот факт вызывает серьезные вопросы как в области материаловедения, так и обеспечения безопасности пользователей.

Немаловажная эксплуатационная проблема связана с вопросами теплопроводности и температурной стойкости металлов. Тепло подводится к рабочему объему через теплообменники, что приводит к неизбежным потерям. Кроме того, теплообменник должен быть изготовлен из термостойких металлов, устойчивых к высокому давлению. Подходящие материалы очень дороги и сложны в обработке.

Принципы изменения режимов двигателя Стирлинга также кардинально отличаются от традиционных, что требует разработки специальных управляющих устройств. Так, для изменения мощности необходимо изменить давление в цилиндрах, угол фаз между вытеснителем и силовым поршнем или повлиять на емкость полости с рабочим телом.

Один из способов управления скоростью вращения вала на модели двигателя Стирлинга можно увидеть на следующем видео:

Коэффициент полезного действия

В теоретических расчетах эффективность двигателя Стирлинга зависит от разницы температур рабочего тела и может достигать 70% и более в соответствии с циклом Карно.

Однако первые реализованные в металле образцы обладали крайне невысоким КПД по следующим причинам:

  • неэффективные варианты теплоносителя (рабочего тела), ограничивающие максимальную температуру нагрева;
  • потери энергии на трение деталей и теплопроводность корпуса двигателя;
  • отсутствие конструкционных материалов, устойчивых к высокому давлению.

Инженерные решения постоянно совершенствовали устройство силового агрегата. Так, во второй половине XX века четырехцилиндровый автомобильный двигатель Стирлинга с ромбическим приводом показал на испытаниях КПД равный 35% на водном теплоносителе с температурой 55 °C.Тщательная проработка конструкции, применение новых материалов и доводка рабочих узлов обеспечили КПД экспериментальных образцов в 39%.

Примечание! Современные бензиновые двигатели аналогичной мощности обладают коэффициентом полезного действия на уровне 28-30%, а турбированные дизели в пределах 32-35%.

Современные образцы двигателя Стирлинга, такие как созданный американской компанией Mechanical Technology Inc, демонстрируют эффективность до 43,5%. А с освоением выпуска жаропрочной керамики и аналогичных инновационных материалов появится возможность значительного повышения температуры рабочей среды и достижения КПД в 60%.

Примеры успешной реализации автомобильных Стирлингов

Несмотря на все сложности, известно немало работоспособных моделей двигателя Стирлинга, применимых для автомобилестроения.

Заинтересованность в Стирлинге, подходящем для установки в автомобиль, появилась в 50-е годы XX века. Работу в данном направлении вели такие концерны, как Ford Motor Company, Volkswagen Group и другие.

Компания UNITED STIRLING (Швеция) разработала Стирлинг, в котором максимально использовались серийные узлы и агрегаты, выпускаемые автопроизводителями (коленчатый вал, шатуны). Получившийся в результате четырехцилиндровый V-образный мотор обладал удельной массой 2,4 кг/кВт, что сравнимо с характеристиками компактного дизеля. Данный агрегат был успешно опробован в качестве силовой установки семитонного грузового фургона.

Одним из успешных образцов является четырехцилиндровый двигатель Стирлинга нидерландского производства модели «Philips 4-125DA», предназначавшийся для установки на легковой автомобиль. Мотор имел рабочую мощность 173 л. с. в размерах, аналогичных классическому бензиновому агрегату.

Значительных результатов добились инженеры компании General Motors, построив в 70-х годах восьмицилиндровый (4 рабочих и 4 компрессионных цилиндра) V-образный двигатель Стирлинга со стандартным кривошипно-шатунным механизмом.

Аналогичной силовой установкой в1972 году оснащалась ограниченная серия автомобилей Ford Torino , расход топлива у которой снизился на 25% по сравнению с классической бензиновой V-образной восьмеркой.

В настоящее время более полусотни зарубежных компаний ведут работы по совершенствованию конструкции двигателя Стирлинга в целях его адаптации к массовому выпуску для нужд автомобилестроения. И если удастся устранить недостатки данного типа двигателей, в то же время сохранив его преимущества, то именно Стирлинг, а не турбины и электромоторы, придет на смену бензиновым ДВС.

Доктор технических наук В. НИСКОВСКИХ (г. Екатеринбург).

Ограниченные запасы углеводородного топлива и высокие цены на него заставляют инженеров искать замену двигателям внутреннего сгорания. Российский изобретатель предлагает простую конструкцию двигателя с внешним подводом теплоты, который рассчитан на любой вид топлива, даже на нагрев солнечными лучами. Создатель проекта двигателя Виталий Максимович Нисковских - конструктор, широко известный специалистам-металлургам не только в нашей стране, но и за рубежом. Он автор более 200 изобретений в области оборудования по разливке стали, один из основателей отечественной школы проектирования машин непрерывного литья криволинейных заготовок (МНЛЗ). Сегодня 36 таких машин, изготовленных под руководством В. М. Нисковских на Уралмаше, работают на металлургических комбинатах России, а также в Болгарии, Македонии, Пакистане, Словакии, Финляндии, Японии.

В 1816 году шотландец Роберт Стирлинг изобрел двигатель с внешним подводом теплоты. Широкого распространения изобретение в то время не получило - слишком сложной была конструкция по сравнению с паровой машиной и появившимися позже двигателями внутреннего сгорания (ДВС).

Однако в наши дни вновь возник острый интерес к двигателям Стирлинга. Постоянно появляется информация о новых разработках и попытках наладить их массовое производство. Например, на голландской фирме "Филипс" построили несколько модификаций двигателя Стирлинга для большегрузных автомобилей. Двигатели внешнего сгорания ставят на судах, на небольших электростанциях и ТЭЦ, а в перспективе собираются оснащать ими космические станции (там их предполагают использовать для привода электрогенераторов, поскольку двигатели способны работать даже на орбите Плутона).

Двигатели Стирлинга имеют высокий кпд, могут работать с любым источником теплоты, бесшумны, в них не расходуется рабочее тело, в качестве которого обычно применяют водород или гелий. Двигатель Стирлинга мог бы успешно использоваться на атомных подводных лодках.

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В двигателях с внешним подводом теплоты такое исключено, поскольку они абсолютно герметичны. Кроме того, смазка не окисляется и требует замены значительно реже, чем в ДВС.

Двигатель Стирлинга, если его использовать как механизм с внешним приводом, превращается в холодильный агрегат. В 1944 году в Голландии образец такого двигателя раскрутили с помощью электромотора, и температура головки цилиндра вскоре понизилась до -190°С. Подобные устройства успешно используют для сжижения газов.

И все же сложность системы кривошипов и рычагов в поршневых двигателях Стирлинга ограничивает их применение.

Проблему можно решить, заменив поршни роторами. Основная идея изобретения состоит в том, что на общем валу установлены два рабочих цилиндра разной длины с эксцентриковыми роторами и подпружиненными разделительными пластинами. Полость нагнетания (условно - сжатия) малого цилиндра соединена с полостью расширения большого цилиндра через канавки в разделительных пластинах, трубопровод, теплообменник-регенератор и нагреватель, а полость расширения малого цилиндра - с полостью нагнетания большого цилиндра через регенератор и холодильник.

Двигатель работает следующим образом. В каждый момент времени из малого цилиндра в ветвь высокого давления поступает некоторый объем газа. Чтобы заполнить полость нагнетания большого цилиндра и при этом сохранить давление, газ нагревают в регенераторе и нагревателе; его объем увеличивается, и давление остается постоянным. То же, но "с обратным знаком" происходит в ветви низкого давления.

Из-за разницы в площадях поверхности роторов возникает результирующая сила F =∆p (S б -S м ), где ∆p - разность давлений в ветвях высокого и низкого давлений; S б - рабочая площадь большого ротора; S м - рабочая площадь малого ротора. Эта сила вращает вал с роторами, и рабочее тело непрерывно циркулирует, последовательно проходя через всю систему. Полезный рабочий объем двигателя равен разности объемов двух цилиндров.

См. в номере на ту же тему

Обострение глобальных проблем, требующих срочного решения (истощение природных ресурсов, загрязнение окружающей среды и т. д.), привело в конце XX века к необходимости принятия ряда международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, ресурсо- и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д.

Одним из перспективных путей решения этих задач является разработка и широкое внедрение энергопреобразующих систем на основе двигателей (машин) Стирлинга. Принцип работы таких двигателей был предложен в 1816 году шотландцем Робертом Стирлингом. Это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая мощность равна максимальной мощности тепловых машин (цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа при его охлаждении. Двигатель содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно имеющей температуру окружающей среды) и «горячей» частью, которая нагревается за счет сжигания различного топлива или за счет других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания (ДВПТ). Поскольку, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура и при отсутствии газораспределительного механизма клапанов.

Необходимо отметить, что за рубежом уже начато производство двигателей Стирлинга, технические характеристики которых превосходят ДВС и газотурбинные установки (ГТУ). Так, двигатели Стирлинга фирм «Philips», «STM Inc.», «Daimler Benz», «Solo», «United Stirling» мощностью от 5 до 1200 кВт имеют к.п.д. более 42%, рабочий ресурс более 40 тыс. часов и удельную массу от 1,2 до 3,8 кг/кВт.

В мировых обзорах по энергопреобразующей технике двигатель Стирлинга рассматривается как наиболее перспективный в XXI веке. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на различных топливах, большой ресурс, хорошие характеристики крутящего момента - все это делает двигатели Стирлинга более конкурентоспособными в сравнении с ДВС.

Где могут применяться двигатели Стирлинга?

Автономные энергетические установки с двигателями Стирлинга (стирлинг-генераторы) могут найти применение в регионах России, где нет запасов традиционных энергоносителей – нефти и газа. В качестве топлива можно использовать торф, древесину, сланцы, биогаз, уголь, отходы сельского хозяйства и лесоперерабатывающей промышленности. Соответственно, исчезает проблема с энергообеспечением многих регионов.

Такие энергетические установки экологически чисты, так как концентрация вредных веществ в продуктах сгорания почти на два порядка ниже, чем у дизельных электростанций. Поэтому стирлинг-генераторы можно устанавливать в непосредственной близости от потребителя, что позволит избавиться от потерь на передачу электроэнергии. Генератор мощностью 100 кВт может обеспечить электроэнергией и теплом любой населенный пункт с населением более 30-40 человек.

Автономные энергетические установки с двигателями Стирлинга найдут широкое применение и в нефтегазовой промышленности РФ при освоении новых месторождений (особенно в условиях Крайнего Севера и шельфа арктических морей, где нужна серьезная энерговооруженность разведочных, буровых, сварочных и других работ). В качестве топлива здесь можно использовать неочищенный природный газ, попутный нефтяной газ и газовый конденсат.

Сейчас в РФ ежегодно пропадает до 10 млрд. куб. м попутного газа. Собирать его сложно и дорого, использовать в качестве моторного топлива для двигателей внутреннего сгорания нельзя из-за постоянно меняющегося фракционного состава. Чтобы газ не загрязнял атмосферу, он попросту сжигается. В то же время его использование в качестве моторного топлива даст существенный экономический эффект.

Энергоустановки мощностью 3-5 кВт целесообразно использовать в системах автоматизации, связи и катодной защиты на магистральных газопроводах. А более мощные (от 100 до 1000 кВт) - для электро- и теплоснабжения больших вахтовых поселков газовиков и нефтяников. Установки свыше 1 тыс. кВт могут применяться на наземных и морских буровых объектах нефтегазовой промышленности.

Проблемы создания новых двигателей

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий к.п.д. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат был разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с к.п.д. до 15%. Лишь к 1953 году голландской фирмой «Филипс» были созданы первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

В России попытки создания отечественных двигателей Стирлинга предпринимались неоднократно, однако успеха не имели. Есть несколько основных проблем, сдерживающих их разработку и широкое применение.

Прежде всего это создание адекватной математической модели проектируемой машины Стирлинга и соответствующего метода расчета. Сложность расчета определяется сложностью реализации термодинамического цикла Стирлинга в реальных машинах, обусловленной нестационарностью тепломассового обмена во внутреннем контуре - вследствие непрерывного движения поршней.

Отсутствие адекватных математических моделей и методов расчета - главная причина неудач ряда зарубежных и отечественных предприятий в разработке как двигателей, так и холодильных машин Стирлинга. Без точного математического моделирования доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования.

Еще одна проблема заключается в создании конструкций отдельных узлов, сложностях с уплотнениями, регулированием мощности и т.д. Трудности конструктивного исполнения обусловлены применяемыми рабочими телами, в качестве которых используется гелий, азот, водород и воздух. Гелий, например, обладает сверхтекучестью, что диктует повышенные требования к уплотняющим элементам рабочих поршней, и т. д.

Третья проблема - высокий уровень технологии производства, необходимость применения жаростойких сплавов и металлов, новых методов их сварки и пайки.

Отдельный вопрос - изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой - низкого гидравлического сопротивления.

Отечественные разработки машин Стирлинга

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Особое внимание в ходе исследований уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также созданию новых принципиальных схем установок различного функционального назначения. Предлагаемые технические решения с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить экономическую эффективность применения новых двигателей по сравнению с традиционными преобразователями энергии.

Производство двигателей Стирлинга является экономически целесообразным с учетом практически неограниченного спроса на экологически чистое и высокоэффективное энергетическое оборудование как в России, так и за рубежом. Однако без участия и поддержки государства и крупного бизнеса проблема их серийного производства не может быть решена в полном объеме.

Как помочь производству двигателей Стирлинга в России?

Очевидно, что инновационная деятельность (особенно освоение базисных инноваций) - сложный и рискованный вид хозяйственной деятельности. Поэтому она должна опираться на механизм государственной поддержки, особенно «на старте», с последующим переходом на обычные рыночные условия.

Механизм создания в России крупномасштабного производства машин Стирлинга и энергопреобразующих систем на их основе мог бы включать:
- прямое долевое бюджетное финансирование инновационных проектов по машинам Стирлинга;
- косвенные меры поддержки за счет освобождения продукции, выпускаемой по стирлинг-проектам, от НДС и других налогов федерального и регионального уровней в течение первых двух лет, а также предоставление налогового кредита по такой продукции на последующие 2-3 года (учитывая, что издержки освоения принципиально новой продукции нецелесообразно включать в ее цену, т.е. в расходы производителя или потребителя);
- исключение из налогооблагаемой базы по налогу на прибыль вклада предприятия в финансирование стирлинг-проектов.

В дальнейшем, на этапе устойчивого продвижения энергетического оборудования на основе машин Стирлинга на внутреннем и внешнем рынках, восполнение капиталов для расширения производства, технического переоснащения и поддержки очередных проектов по производству новых типов оборудования может осуществляться за счет прибыли и продажи акций успешно освоенного производства, кредитных ресурсов коммерческих банков, а также привлечения иностранных инвестиций.

Можно предположить, что благодаря наличию технологической базы и накопленного научного потенциала в проектировании машин Стирлинга, при разумной финансовой и технической политике Россия может уже в ближайшем будущем стать мировым лидером в области производства новых экологически чистых и высокоэффективных двигателей.

Вытеснил остальные виды силовых установок, однако, работы, направленные на отказ от использования этих агрегатов, наводят на мысль о скорой смене лидирующих позиций.

С начала технического прогресса, когда использование моторов, сжигающих горючее внутри, только начиналось, не было очевидным их превосходство. Паровая машина, как конкурент, содержит в себе массу преимуществ: наряду с тяговыми параметрами, бесшумная, всеядная, легко управляется и настраивается. Но лёгкость, надёжность и экономичность позволили двигателю внутреннего сгорания взять вверх над паром.

Сегодня во главе угла стоят вопросы экологии, экономичности и безопасности. Это заставляет инженеров бросать силы на серийные агрегаты, работающие за счёт возобновляемых источников топлива. В 16 году девятнадцатого века Роберт Стирлинг зарегистрировал двигатель, работающий от внешних источников тепла. Инженеры считают, что этот агрегат способен сменить современного лидера. Двигатель Стирлинга сочетает экономичность, надёжность, работает тихо, на любом топливе, это делает изделие игроком на автомобильном рынке.

Роберт Стирлинг (1790-1878 года жизни):

История двигателя Стирлинга

Изначально, установку разрабатывали с целью заменить машину, работающую за счёт пара. Котлы паровых механизмов взрывались, при превышении допустимых норм давлением. С этой точки зрения Стирлинг намного безопасней, функционирует, используя температурный перепад.

Принцип работы двигателя Стирлинга в поочередной подаче или отборе тепла у вещества, над которым совершается работа. Само вещество заключено в объём закрытого типа. Роль рабочего вещества выполняют газы, либо жидкости. Встречаются вещества, выполняющие роль двух компонентов, газ преобразовывается в жидкость и наоборот. Жидкопоршневой мотор Стирлинга обладает: небольшими габаритами, мощный, вырабатывает большое давление.

Уменьшение и увеличение объёма газа при охлаждении либо нагреве соответственно, подтверждается законом термодинамики, согласно которого все составляющие: степень нагрева, величина занимаемого пространства веществом, сила, действующая на единицу площади, связаны и описываются формулой:

P*V=n*R*T

  • P – сила действия газа в двигателе на единицу площади;
  • V – количественная величина, занимаемая газом в пространстве двигателя;
  • n – молярное количество газа в двигателе;
  • R – постоянная газа;
  • T – степень нагрева газа в двигателе К,

Модель двигателя Стирлинга:


За счёт неприхотливости установок, двигатели подразделяются: твердотопливные, жидкое горючее, солнечная энергия, химическая реакция и другие виды нагрева.

Цикл

Двигатель внешнего сгорания Стирлинга, использует одноимённую совокупность явлений. Эффект от протекающего действия в механизме высок. Благодаря этому есть возможность сконструировать двигатель с неплохими характеристиками в рамках нормальных габаритов.

Необходимо учитывать, что в конструкции механизма предусмотрен нагреватель, холодильник и регенератор, устройство, отвода тепла от вещества и возвращения тепла, в нужный момент.

Идеальный цикл Стирлинга, (диаграмма «температура-объём»):

Идеальные круговые явления:

  • 1-2 Изменение линейных размеров вещества с постоянной температурой;
  • 2-3 Отвод теплоты от вещества к теплообменнику, пространство, занимаемое веществом постоянно;
  • 3-4 Принудительное сокращение пространства, занимаемого веществом, температура постоянна, тепло отводится охладителю;
  • 4-1 Принудительное увеличение температуры вещества, занимаемое пространство постоянно, тепло подводится от теплообменника.

Идеальный цикл Стирлинга, (диаграмма «давление-объём»):

Из расчёта (моль) вещества:

Подводимое тепло:

Получаемое охладителем тепло:

Теплообменник получает тепло (процесс 2-3), теплообменник отдаёт тепло (процесс 4-1):

R – Универсальная постоянная газа;

СV – способность идеального газа удерживать тепло при неизменной величине занимаемого пространства.

За счёт применения регенератора, часть теплоты остается, в качестве энергии механизма, не меняющейся за проходящие круговые явления. Холодильник получает меньше тепла, таким образом, теплообменник экономит тепло нагревателя. Это увеличивает эффективность установки.

КПД кругового явления:

ɳ =

Примечательно, что без теплообменника совокупность процессов Стирлинга осуществима, но его эффективность будет значительно ниже. Прохождение совокупности процессов задом наперёд ведёт к описанию охлаждающего механизма. В этом случае наличие регенератора, обязательное условие, поскольку при прохождении (3-2) невозможно нагреть вещество от охладителя, температура которого значительно ниже. Так же невозможно отдать тепло нагревателю (1-4), температура которого выше.

Принцип работы двигателя

Что бы понять, как работает двигатель Стирлинга, разберёмся в устройстве и периодичности явлений агрегата. Механизм преобразует тепло, полученное от нагревателя, находящегося за пределами изделия в действие силы на тело. Весь процесс происходит благодаря температурному перепаду, в рабочем веществе, находящемся в закрытом контуре.


Принцип действия механизма базируется на расширении за счёт тепла. Непосредственно до расширения, вещество в замкнутом контуре нагревается. Соответственно, перед тем, как сжаться, вещество охлаждают. Сам цилиндр (1) окутан водяной рубашкой (3), ко дну подается тепло. Поршень, совершающий работу (4) помещен в гильзу и уплотнён кольцами. Между поршнем и дном находится механизм вытеснения (2), имеющий значительные зазоры и свободно перемещающийся. Вещество, находящееся в замкнутом контуре, двигается по объёму камеры за счёт вытеснителя. Перемещение вещества ограничено двумя направлениями: дно поршня, дно цилиндра. Движение вытеснителя обеспечивает шток (5), который проходит через поршень и функционирует за счет эксцентрика с запаздыванием на 90° в сравнении с приводом поршня.

  • Позиция «A»:

Поршень расположен в крайнем нижнем положении, вещество охлаждается за счет стенок.

  • Позиция «B»:

Вытеснитель занимает верхнее положение, перемещаясь, пропускает вещество через торцевые щели ко дну, сам охлаждается. Поршень стоит неподвижно.

  • Позиция «C»:

Вещество получает тепло, под действием тепла увеличивается в объёме и поднимает расширитель с поршнем вверх. Совершается работа, после чего вытеснитель опускается на дно, выталкивая вещество и охлаждаясь.

  • Позиция «D»:

Поршень опускается вниз, сжимает охлаждённое вещество, выполняется полезная работа. Маховик служит в конструкции аккумулятором энергии.

Рассмотренная модель без регенератора, поэтому КПД механизма не велико. Тепло вещества после совершения работы отводится в охлаждающую жидкость, используя стенки. Температура не успевает снижаться на нужную величину, поэтому время охлаждения продлевается, скорость мотора маленькая.

Виды двигателей

Конструктивно, есть несколько вариантов, использующих принцип Стирлинга, основными видами считаются:


Конструкция применяет два разных поршня, помещенных в различные контуры. Первый контур используется для нагрева, второй контур применяется для охлаждения. Соответственно, каждому поршню принадлежит свой регенератор (горячий и холодный). Устройство обладает хорошим соотношением мощности к объёму. Недостаток в том, что температура горячего регенератора создает конструктивные сложности.

  • Двигатель «β – Стирлинг»:


Конструкция использует один замкнутый контур, с разными температурами на концах (холодный, горячий). В полости расположен поршень с вытеснителем. Вытеснитель делит пространство на холодную и горячую зону. Обмен холодом и теплом происходит путём перекачивания вещества через теплообменник. Конструктивно, теплообменник выполняется в двух вариантах: внешний, совмещённый с вытеснителем.

  • Двигатель «γ – Стирлинг»:


Поршневой механизм предусматривает применение двух замкнутых контуров: холодного и с вытеснителем. Мощность снимается с холодного поршня. Поршень с вытеснителем с одной стороны горячий, с другой стороны холодный. Теплообменник располагается как внутри, так и снаружи конструкции.

Некоторые силовые установки не похожи на основные виды двигателей:

  • Роторный двигатель Стирлинга.


Конструктивно изобретение с двумя роторами на валу. Деталь совершает вращательные движения в замкнутом пространстве цилиндрической формы. Заложен синергетический подход реализации цикла. Корпус содержит радиальные прорези. В углубления вставлены лопасти с определённым профилем. Пластины надеты на ротор и могут двигаться вдоль оси при вращении механизма. Все детали создают меняющиеся объёмы с выполняющимися в них явлениями. Объёмы различных роторов связаны при помощи каналов. Расположение каналов имеют сдвиг в 90° друг к другу. Сдвиг роторов относительно друг друга составляет 180°.

  • Термоакустический двигатель Стирлинга.


Двигатель использует акустический резонанс для проведения процессов. Принцип основан на перемещении вещества между горячей и холодной полостью. Схема уменьшает количество движущихся деталей, сложность в снятии полученной мощности и поддержании резонанса. Конструкция относится к свободнопоршневому виду мотора.

Двигатель Стирлинга своими руками

Сегодня довольно часто в интернет магазине можно встретить сувенирную продукцию, выполненную в виде рассматриваемого двигателя. Конструктивно и технологично механизмы довольно просты, при желании двигатель Стирлинга легко сконструировать своими руками из подручных средств. В интернете можно найти большое количество материалов: видео, чертежи, расчёты и прочая информация на эту тему.

Низкотемпературный двигатель Стирлинга:


  • Рассмотрим самый простой вариант волнового двигателя, для выполнения которого понадобится консервная банка, мягкая полиуретановая пена, диск, болты и канцелярские скрепки. Все эти материалы легко найти дома, осталось выполнение следующих действий:
  • Возьмите мягкую полиуретановую пену, вырежьте на два миллиметра меньшим диаметром от внутреннего диаметра консервной банки круг. Высота пены на два миллиметра больше половины высоты банки. Поролон играет роль вытеснителя в двигателе;
  • Возьмите крышку банки, в средине проделайте дырку, диаметр два миллиметра. Припаяйте к отверстию полый шток, который будет выполнять, роль направляющей для шатуна двигателя;
  • Возьмите круг, вырезанный из пены, вставьте в средину круга винтик и застопорите с двух сторон. К шайбе припаяйте предварительно выпрямленную скрепку;
  • В двух сантиметрах от центра просверлите дырочку, диаметром три миллиметра, проденьте вытеснитель через центральное отверстие крышки, припаяйте крышку к банке;
  • Сделайте из жести небольшой цилиндр, диаметром полтора сантиметра, припаяйте его к крышке банки таким образом, что бы боковое отверстие крышки оказалось чётко по центру внутри цилиндра двигателя;
  • Сделайте коленчатый вал двигателя из скрепки. Расчёт выполняется таким образом, что бы разнос колен был 90°;
  • Изготовьте стойку под коленчатый вал двигателя. Из полиэтиленовой плёнки сделайте упругую перепонку, наденьте плёнку на цилиндр, продавите её, зафиксируйте;


  • Самостоятельно изготовьте шатун двигателя, один конец выпрямленного изделия выгнете в форме кружка, второй конец вставьте в кусочек ластика. Длина подгоняется таким образом, что бы в крайней нижней точке вала перепонка была втянута, в крайней верхней точке, перепонка максимально вытянута. Настройте другой шатун по такому же принципу;
  • Шатун двигателя с резиновым наконечником приклейте к перепонке. Шатун без резинового наконечника закрепите на вытеснителе;
  • Наденьте на кривошипный механизм двигателя маховик из диска. К банке приделайте ножки, чтобы не держать изделие в руках. Высота ножек позволяет разместить под банкой свечку.

После того, как удалось сделать двигатель Стирлинга дома, мотор запускают. Для этого под банку помещают зажженную свечку, а после того, как банка прогрелась, дают толчок маховику.


Рассмотренный вариант установки можно быстро собрать у себя дома, как наглядное пособие. Если задаться целью и желанием сделать двигатель Стирлинга максимально приближённый к заводским аналогам, в свободном доступе есть чертежи всех деталей. Пошаговое выполнение каждого узла позволит создать работающий макет ни чем не хуже коммерческих версий.

Преимущества

Для двигателя Стирлинга характерны такие плюсы:

  • Для работы двигателя необходим температурный перепад, какое топливо вызывает нагрев не важно;
  • Нет необходимости использовать навесное и вспомогательное оборудование, конструкция двигателя простая и надёжная;
  • Ресурс двигателя, благодаря особенностям конструкции, составляет 100000 часов работы;
  • Работа двигателя не создаёт постороннего шума, поскольку отсутствует детонация;
  • Процесс работы двигателя не сопровождается выбросом отработанных веществ;
  • Работа двигателя сопровождается минимальной вибрацией;
  • Процессы в цилиндрах установки экологически безвредны. Использование правильного источника тепла позволяет сделать двигатель «чистым».

Недостатки

К недостаткам двигателя Стирлинга относятся:

  • Трудно наладить серийное производство, поскольку конструктивно двигатель требует использования большого количества материалов;
  • Высокий вес и большие габариты двигателя, поскольку для эффективного охлаждения надо применять большой радиатор;
  • Для повышения эффективности двигатель форсируют, применяя в качестве рабочего тела сложные вещества (водород, гелий), что делает эксплуатацию агрегата опасным;
  • Высокотемпературная стойкость стальных сплавов и их теплопроводность усложняет процесс изготовления двигателя. Значительные потери тепла в теплообменнике снижают эффективность агрегата, а применение специфических материалов делают изготовление двигателя дорогим;
  • Для регулировки и перехода двигателя с режима на режим надо применять специальные устройства управления.

Использование

Двигатель Стирлинга нашел свою нишу и активно применяется там, где габариты и всеядность важный критерий:

  • Двигатель Стирлинг-электрогенератор.

Механизм преобразования тепла в электрическую энергию. Часто встречаются изделия, используемые в качестве портативных туристических генераторов, установки по использованию солнечной энергии.

  • Двигатель, как насос (электрика).

Двигатель применяют для установки в контур отопительных систем, экономя на электрической энергии.

  • Двигатель, как насос (обогреватель).

В странах с тёплым климатом двигатель используют как обогреватель для помещений.

Двигатель Стирлинга на подводной лодке:


  • Двигатель, как насос (охладитель).

Практически все холодильники в своей конструкции применяют тепловые насосы, устанавливая двигатель Стирлинга, экономятся ресурсы.

  • Двигатель, как насос, создающий сверхнизкие степени нагрева.

Устройство применяют в качестве холодильника. Для этого процесс запускают в обратную сторону. Агрегаты сжижают газ, охлаждают измерительные элементы в точных механизмах.

  • Двигатель для подводной техники.

Подводные корабли Швеции и Японии работают благодаря двигателю.

Двигатель Стирлинга в качестве солнечной установки:


  • Двигатель, как аккумулятор энергии.

Топливо в таких агрегатах, расплавы соли, двигатель применяют, как источник энергии. Мотор по запасу энергии опережает химические элементы.

  • Солнечный двигатель.

Преобразуют энергию солнца в электричество. Вещество в данном случае, водород или гелий. Двигатель ставится в фокусе максимальной концентрации энергии солнца, созданного при помощи параболической антенны.

Одним из перспективных источников механической энергии для автомобилей является двигатель внешнего сгорания, разработанный уроженцем Шотландии Робертом Стирлингом пару веков назад. Двигатель внешнего сгорания Стирлинга по принципу работы сильно отличается от привычного для всех ДВС. Но на какое-то время после разработки о нём благополучно забыли.

История создания

В 1816 году уроженец Шотландии Роберт Стирлинг запатентовал тепловую машину, которую сегодня называют в честь своего создателя. Однако сама идея двигателей горячего воздуха была придумана вовсе не им. Но первый осознанный проект по созданию такого агрегата реализовал именно Стирлинг.

Он усовершенствовал систему, добавив в неё очиститель, в технической литературе называвшийся теплообменником. Благодаря этому сильно возросла производительность мотора благодаря удержанию его в тепле. Эта модель для того времени была признана самой прочной, поскольку никогда не взрывалась.

Несмотря на такой быстрый успех продвижения модели, в начале двадцатого столетия от дальнейшего развития двигателя внешнего сгорания отказались из-за его себестоимости в пользу двигателя внутреннего сгорания.

Двигатель Стирлинга: принцип работы и модификации

Принцип работы любого теплового мотора заключается в том, что для получения газа в расширенном состоянии нужны немалые механические усилия. В качестве наглядного примера можно привести опыт с двумя кастрюлями, согласно которому их наполняют холодной и горячей водой. Опускают в холодную воду бутылку с закрученной пробкой. После этого бутылку переносят в горячую воду.

При таком перемещении газ в бутылке совершает механическую работу и выталкивает пробку из горлышка. Первая модель двигателя внешнего сгорания работала по точно такому же принципу. Однако позже создатель осознал, что часть выделяемого тепла можно использовать для подогрева. Производительность агрегата от этого только возросла.

Чуть позже инженер из Швеции Эриксон усовершенствовал конструкцию, выдвинув идею об охлаждении и нагревании газа при постоянном давлении вместо объёма. Это позволило двигателю «продвинуться по карьерной лестнице» и начать использоваться в шахтах и типографиях. Для экипажей и транспортных средств агрегат оказался слишком тяжёлым.

На рисунке наглядно отображается рабочий цикл двигателя Стирлинга.

Как работает двигатель Стирлинга? Он преобразует тепловую энергию, подводимую извне, в полезную механическую работу. Этот процесс происходит за счёт изменения температуры газа или жидкости, циркулирующих в замкнутом объёме. В нижней части агрегата рабочее вещество нагревается, увеличивается в объёме и выталкивает поршень вверх.

Горячий воздух поступает в верхнюю часть мотора и охлаждается с помощью радиатора. Давление рабочего тела понижается, а поршень опускается для повторения всего цикла. Система полностью герметична, благодаря чему рабочее вещество не расходуется, а лишь перемещается внутри цикла.

Кроме того, существуют моторы с открытым циклом, в которых регулирование потоком реализуется с помощью клапанов. Эти модели называют двигателем Эриксона. В целом принцип работы двигателя внешнего сгорания схож с ДВС. При низких температурах в нём происходит сжатие и наоборот. Нагрев же осуществляется по-разному.

Тепло в двигателе внешнего сгорания подводится через стенку цилиндра извне. Стирлинг догадался применять периодическое изменение температуры с вытеснительным поршнем. Этот поршень перемещает газы с одной полости цилиндра в другую. При этом с одной стороны постоянно поддерживаются низкие температуры, а с другой - высокие. При перемещении поршня вверх газ перемещается из горячей в холодную полость.

Система вытеснителя в двигателе соединена с рабочим поршнем, который сжимает газ в холоде и позволяет расширяться в тепле. Полезная работа совершается как раз благодаря сжатию в более низких температурах. Непрерывность обеспечивается кривошипно-шатунным механизмом. Особых границ между стадиями цикла не наблюдается. Благодаря этому КПД двигателя Стирлинга не уменьшается.

Некоторые детали работы двигателя

В теории подводить энергию в двигатель внешнего сгорания может любой источник тепла (солнце, электричество, топливо). Принцип работы тела двигателя заключается в использовании гелия, водорода или воздуха. Термическим максимально возможным КПД обладает идеальный цикл. КПД при этом составляет от 30 до 40 %. Эффективный регенератор может обеспечить более высокий КПД. Встроенные теплообменники обеспечивают регенерацию, обмен и охлаждение в современных двигателях. Их преимуществом является работа без масел. В целом смазки двигателю необходимо немного. Среднее давление в цилиндре варьируется от 10 до 20 МПа. Необходима хорошая уплотнительная система и возможность попадания масла в рабочие полости.

Согласно теоретическим расчётам эффективность двигателя Стирлинга сильно зависима от температуры и может достигать даже 70 %. Самые первые реализованные в металле образцы двигателя обладали низким КПД, поскольку варианты теплоносителя были неэффективны и ограничивали максимальную температуру нагрева, отсутствовали конструкционные материалы, устойчивые к высокому давлению. Во второй половине XX века двигатель с ромбическим приводом во время испытаний превысил показатель 35 % КПД на водном теплоносителе и с температурой 55 градусов по Цельсию. Совершенствование конструкции в некоторых экспериментальных образцах позволило достичь практически 39 % КПД. Почти все современные бензиновые двигатели, имеющие аналогичную мощность, обладают КПД 28 — 30 %. Турбированные дизели достигают около 35 %. Самые современные образцы двигателей Стирлинга, разработанные компанией Mechanical Technology Inc в США, показывают эффективность до 43 %.

После освоения жаропрочной керамики и других инновационных материалов появится возможность ещё сильнее увеличить температуру среды. КПД может при таких условиях достичь даже 60 %.

Существует несколько модификаций двигателя внешнего сгорания Стирлинга.

Модификация «Альфа»

Такой двигатель состоит из горячего и холодного раздельных силовых поршней, находящихся в собственных цилиндрах. К цилиндру с горячим поршнем поступает тепло, а холодный располагается в охлаждающем теплообменнике.

Модификация «Бета»

В этом варианте двигателя цилиндр, в котором расположился поршень, с одной стороны нагревается, а другой охлаждается. Внутри цилиндра двигаются вытеснитель и силовой поршень. Вытеснитель предназначен для изменения объёма рабочего газа. Регенератор же выполняет возвращение остывшего рабочего вещества в нагретую полость двигателя.

Модификация «Гамма»

Вся нехитрая конструкция модификации «Гамма» выполнена из двух цилиндров. Первый из них полностью холодный. В нём совершает движение силовой поршень. А второй - холодный только с одной стороны, а с другой - нагретый. Он служит для перемещения механизма вытеснителя. Регенератор циркуляции холодного газа в этой модификации может быть общим для обоих цилиндров и быть включённым в конструкцию вытеснителя.

Преимущества двигателя внешнего сгорания

Этот вид двигателей неприхотлив в плане топлива, поскольку основой его работы является перепад температур. Чем вызван этот перепад — особого значения не имеет. Двигатель Стирлинга имеет простую конструкцию и не нуждается в дополнительных системах и навесном оборудовании (стартер, коробка передач). Некоторые особенности устройства двигателя являются гарантией долгого срока эксплуатации: двигатель может работать непрерывно в течении примерно ста тысяч часов. Ещё одним серьёзным преимуществом двигателя внешнего сгорания является бесшумность. Она обусловлена тем, что в цилиндрах отсутствует детонация и нет необходимости в выводе отработавших газов. Особенно выделяется по этому параметру модификация «Бета». Её конструкция оснащена ромбовидным кривошипно-шатунным механизмом, который обеспечивает отсутствие вибраций во время работы. И, наконец, экологичность. В цилиндрах двигателя отсутствуют процессы, способные негативно влиять на окружающую среду.

При выборе альтернативных источников тепла (энергии солнца) двигатель Стирлинга превращается в разновидность экологически чистого силового агрегата.

Недостатки двигателя внешнего сгорания

Массовый выпуск таких двигателей в настоящее время невозможен. Основная проблема - это материалоёмкость конструкции. Охлаждение рабочего тела двигателя требует установку радиаторов с большими объёмами. Вследствие этого увеличиваются размеры. Использование сложных видов рабочего тела вроде водорода или гелия поднимает вопрос о безопасности двигателя. Теплопроводность и температурная стойкость должны быть на высоком уровне. Тепло к рабочему объёму поступает через теплообменники. Таким образом, часть тепла теряется по дороге. При изготовлении теплообменники приходится использовать термостойкие металлы. При этом металлы должны быть устойчивы к высокому давлению. Все эти материалы стоят дорого и долго обрабатываются. Принципы изменения режимов двигателя внешнего сгорания сильно отличаются от традиционных. Требуется разработка специальных управляющих устройств. Изменение мощности вызывается изменением давления в цилиндрах и угла фаз между вытеснителем и силовым поршнем. Также можно изменить ёмкость полости с рабочим телом.

Примеры реализации двигателей внешнего сгорания на автомобилях

Работоспособные модели такого двигателя были выпущены в свет, несмотря на все сложности изготовления. В 50 года XX века у автомобилестроительных компаний появилась заинтересованность в этой разновидности силового агрегата. В основном реализацией двигателей Стирлинга на автомобилях занимались Ford Motor Company и Volkswagen Group. Шведская компания UNITED STIRLING разработала такой двигатель, в котором разработчики старались чаще использовать серийные агрегаты и узлы (коленвал, шатуны). Был разработан четырёхцилиндровый V-образный двигатель, обладавший удельной массой 2,4 кг/кВт. Аналогичной массой обладает компактный дизель. Двигатель попробовали устанавливать на семитонные грузовые фургоны.

Наиболее выделяющимся успешным образцом стал Philips 4-125DA, доступный для установки на легковые автомобили. Рабочая мощность двигателя составляла 173 лошадиных силы. Размеры несильно отличались от обычного бензинового ДВС.

Компания General Motors разработала восьмицилиндровый V-образный двигатель внешнего сгорания с серийным кривошипно-шатунным механизмом. В 1972 году ограниченная версия автомобилей Ford Torino оснащалась таким двигателем. Причём расход топлива снизился на целых 25 % по сравнению с предыдущими моделями. Сегодня несколько зарубежных компаний пытаются совершенствовать конструкцию этого двигателя с целью адаптации для серийного производства и установки на легковые автомобили.