» » Гидромуфта акпп принцип работы. Что такое гидротрансформатор

Гидромуфта акпп принцип работы. Что такое гидротрансформатор

Почему гидротрансформатор называют бубликом, без труда объяснит любой, кто хотя бы однажды видел этот узел трансмиссии. Ответить, какую функцию выполняет «бублик», сложней, но догадаться можно, если учесть, что размещен он между двигателем и гидромеханической , и воспользоваться аналогией со сцеплением, расположенным там же в трансмиссиях с обычной МКП.

Как «бублик» работает и из-за чего может выйти из строя? Без знания конструкции ГТ с ответом на эти вопросы уже предвидятся трудности, потому что далеко не всем, кто представляет, как выглядит «бублик» снаружи, и догадывается, для чего он предназначен, доводилось рассматривать его изнутри. Все, что в ГТ имеется, заключено в герметично заваренный корпус — попробуй разгляди, что там есть.

Сим-сим, откройся!

Однако если разрезать «бублик» аккурат по сварному шву, как это сделали мы, выяснится, что внутри корпуса находятся две лопастные гидромашины. Одна из них называется центробежным насосом. Собственно, корпус ГТ и есть внешняя часть насоса, а лопатки насоса находятся с внутренней стороны корпуса. Корпус жестко прикреплен к маховику и, стало быть, вращается вместе с коленчатым валом двигателя. Напротив насоса находится вторая машина — центростремительная турбина. Когда после запуска двигателя корпус начинает вращаться, лопатки насоса увлекают за собой жидкость, которой заполнен ГТ. Под действием центробежной силы жидкость отбрасывается на лопасти турбины, из-за чего колесо турбины также приходит в движение. Жидкость тем временем по межлопаточным каналам турбинного колеса устремляется к центру «бублика», что снова оказаться у входа в насос.

Колесо турбины связано не с корпусом, а с входным валом коробки передач. Так, с помощью циркуляции рабочей жидкости от насоса к турбине и обратно, происходит передача крутящего момента (или кинетической энергии — кому как нравится) от двигателя к коробке передач. Но гидротрансформатором рассматриваемый узел называется неспроста, а потому что помимо осуществления гидравлического сцепления он способен изменять величину передаваемого крутящего момента.

«Бублик» превращается в трансформатор благодаря наличию еще одного лопастного устройства. Называется оно реактором и представляет собой направляющий аппарат, размещенный на пути возвращения жидкости от турбины к насосу. Каналы между лопатками реактора сужаются, из-за чего при прохождении жидкости по каналам скорость потока увеличивается. Лопатки спрофилированы так, чтобы поток поворачивался в сторону вращения насоса. Однако быстрей коленвала жестко «привязанное» к маховику насосное колесо вращаться не может. В результате кинетическая энергия ускорившейся в реакторе жидкости передается не насосу, а дальше — турбине.

Обгон и блокировка

Кроме насоса, турбины и реактора внутри ГТ имеются механизм свободного хода реактора и муфта блокировки. Оба эти устройства предназначены для улучшения экономических показателей работы ГТ или, говоря проще, уменьшения потерь энергии в нем и увеличения КПД передачи.

По мере того, как скорость вращения турбинного колеса увеличивается, изменяется направление потока, вытекающего из турбины. Лопатки реактора начинают мешать циркуляции, потери энергии увеличиваются, однако в какой-то момент изменившееся направление потока освобождает обгонную муфту, встроенную в реактор. После этого реактор начинает свободно вращаться вместе с жидкостью и перестает негативно воздействовать на поток.

При отсутствии жесткой связи между насосом и турбиной немалая часть энергии тратится, упрощенно говоря, на «перелопачивание» жидкости. Чтобы снизить гидравлические потери, по достижении турбинным колесом определенной скорости вращения срабатывает фрикционная муфта блокировки. Блокировка жестко соединяет турбину с корпусом ГТ наподобие того, как в сцеплении МКП маховик соединяется с «корзиной». После включения блокировки появляется жесткая связь между коленвалом двигателя и входным валом АКП — крутящий момент от двигателя прямиком передается коробке передач.

Кто тут временный?

Вот блокировка и есть основная проблема ГТ. Независимо от исполнения в той или иной модели АКП, принцип работы любой блокировки основан на использовании трения между ведущими и ведомыми элементами. Поскольку вращаются они с разными угловыми скоростями, включение блокировки сопровождается буксованием, вызывающим износ фрикционных накладок. Понятно, что работающие в таких условиях детали имеют ограниченный срок службы.

В отличие от сухих сцеплений в трансмиссиях с МКП блокировка ГТ работает в масле. Для долговечности накладок это хорошо, однако у любой медали есть обратная сторона. Накладки изнашиваются все равно, а продукты износа попадают в масло , после чего разносятся не только внутри ГТ, но и проникают в АКП. По мере того, как накладки становятся тоньше, увеличивается их проскальзывание, из-за чего износ прогрессирует. Когда накладки истончаются до минимума, от них начинают отрываться все более крупные фрагменты, пока от накладок вообще ничего не останется. Если микрочастицы откладываются в каналах гидроблока и соленоидов АКП, вызывая подклинивания клапанов и золотников, то более крупные фрагменты могут закупорить каналы, предназначенные для смазки подшипников, вызвав масляное голодание и последующее заклинивание.

Второе следствие износа и увеличивающегося проскальзывания — выделение в результате трения дополнительного тепла, что ведет к излишнему нагреву жидкости, а затем и ее перегреву. По этой причине ухудшаются рабочие свойства масла, что также не может не отразиться на долговечности ГТ и АКП. Кроме того, высокие температуры сказываются на сальниках и уплотнениях.

В современных АКП будто специально сделано все, чтобы уменьшить срок службы блокировки. Если в старых АКП блокировка включалась на высших передачах, то в нынешних уже со второй передачи она начинает работать с управляемым проскальзыванием, когда фрикцион прижимается к корпусу не полностью, а с микроскопическим зазором. Благодаря частичной блокировке уменьшилось время, в течение которого ГТ разгоняет автомобиль исключительно в гидродинамическом режиме, а значит сократились гидравлические потери, увеличился КПД передачи и, стало быть, экономится топливо. Однако в прицел попал и второй «заяц». Если в былые времена ГТ редко напоминал о себе до 300-350 тыс. км, то сейчас его выход из строя к 200-250 тыс. км не такое уж экстраординарное явление.

Что еще может преподнести сюрприз

Не застрахована от поломки также обгонная муфта реактора. Возможны два варианта неисправностей: обгонная муфта перестает блокироваться и удерживать колесо реактора в неподвижном состоянии либо обгонная муфта заклинивает, после чего реактор будет постоянно находиться в заторможенном состоянии. Причины поломки — износ обойм и сухарей муфты, разрушение сепаратора. Со временем изнашивается и упорный подшипник реактора, однако проблемы с ним и обгонной муфтой возникают намного реже, чем с блокировкой, а вероятность столкнуться с этими проблемами невысока еще и потому, что при ремонте ГТ из-за выхода из строя блокировки обгонную муфту ремонтники также не оставляют без внимания.

Чему должен уделить внимание владелец автомобиля, чтобы преждевременно не стать клиентом ремонтной мастерской? Прежде всего своей манере вождения. Агрессивный стиль с резкими ускорениями и торможениями, культивируемый любителями получать за рулем «удовольствие», — верный способ раньше времени превратить накладки блокировки в абразивную пудру, путешествующую вместе с маслом по ГТ и АКП. Второе — замена масла, несмотря на то, что оно, как заверяют производители, во многих современных АКП залито на весь срок службы агрегата. Масло — носитель продуктов износа, а срок службы, подразумеваемый западными производителями, по всей видимости, раза в два меньше, чем хотелось бы белорусским владельцам автомобилей с АКП.

Вердикт «Автобизнеса»

ГТ выходит из строя медленно и не всегда заметно для водителя — вот в чем беда. А когда признаки становятся явными, может статься, что проблема уже вышла за пределы «бублика» и только одним его ремонтом не отделаешься — нужно ремонтировать еще и АКП. Поэтому когда автомобиль стал с трудом трогаться с места и медленно набирать скорость либо вообще перестал трогаться с места без нажатия на педаль «газа», если при равномерном движении по трассе ощущается легкая вибрация, когда расход топлива при тех же условиях эксплуатации стал больше, чем был раньше, есть смысл показать машину специалистам — не исключено, что вы спохватились вовремя. Если восстановление ГТ обойдется в 1-3 млн руб., то ремонт АКП — это совсем другие деньги.

Мы разрезали «бублик» аккурат по сварному шву, чтобы выяснить, что находится внутри корпуса. Видны турбина и реактор


Когда накладки истончаются до минимума, от них начинают отрываться все более крупные фрагменты


Сверху новый диск блокировки, снизу — свое отработавший


Обгонная муфта реактора не застрахована от поломки


Упорный подшипник реактора. Видны следы износа на упорной части ступицы и упорной шайбе

Поделиться:

Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач - Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор . Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!

В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.

Основы гидротрансформатора

Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.

Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.

Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса.


Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:

  1. Насос
  2. Турбина
  3. Статор
  4. Трансмиссионное масло

Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора.


Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости.

Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него - к турбине, которая как раз и расположена напротив насоса.

Лопасти турбины также немного искривлены. Это означает, что жидкость, которая поступает в турбину снаружи, должна изменить своё направление, переместившись в центр турбины. Именно это направленное изменение вызывает вращение турбины.

Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга - если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора).

Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом - противоположном направлении, чем то, в котором она когда-то вошла в турбину - то есть снова по направлению к насосу. И вот здесь заключается большая проблема - дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело - немного помогая двигателю раскручивать насос.

Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой. Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива.

Гидротрансформатор (гидродинамический трансформатор) устанавливается на автомобилях с автоматической коробкой передач и служит для передачи крутящего момента с коленчатого вала двигателя на ведущий вал коробки передач и трансформации крутящего момента (примерно в 2-3 раза). Он освобождает водителя от постоянного использования педали сцепления при переключении передач и при резком торможении автомобиля, также отсутствует постоянная механическая связь между двигателем и коробкой передач. Связь поддерживается гидродинамическая, осуществляемая жидкостью, подаваемой масляным насосом, турбинным и насосным колёсами. Гидротрансформатор обеспечивает плавное переключение передач (снимает ударные нагрузки), плавный разгон скорости (не допускает пробуксовки колёс).

Неисправности гидротрансформатора.

Гидродинамический трансформатор включает: турбинное колесо, насосное колесо, реактор, механизм блокировки, обгонную муфту, подшипники, масляные уплотнители, детали корпуса. Этот трансформатор закрытого типа, сварной конструкции, все детали находятся внутри герметичного корпуса. Масло закачивается масляным насосом в полость корпуса, обеспечивает постоянную его циркуляцию, за счёт чего достигается отвод тепла (охлаждение) деталей гидродинамического трансформатора, вынос механических и абразивных частиц, образующихся в результате износа трущихся деталей, а также смазка деталей.

Насосное колесо имеет жёсткую связь с двигателя. Турбинное колесо через вал связано с АКПП. Между ними устанавливается колесо (реактор) с обгонной муфтой, обеспечивающее вращение только в одном направлении.

При запуске двигатель начинает раскручиваться. Одновременно с коленчатым валом раскручивается насосное колесо. Оно захватывает своими лопатками масло, которое под действием центробежных сил выталкивается на периферию. Там масло закручивается и попадает на лопатки турбинного колеса. Обладая избыточной скоростью, жидкость действует на лопатки турбинного колеса, начиная постепенно его раскручивать.

С увеличением оборотов двигателя, увеличиваются обороты насосного колеса. Жидкость получает большее ускорение – соответственно, увеличиваются обороты турбинного колеса – проходя его лопатки, получает дополнительное ускорение и попадает на лопатки реактора. Реактор, в связи с тем, что его лопатки установлены под определённым углом, корректирует направление жидкости строго на лопатки насосного колеса. Насосное колесо получает дополнительное ускорение, и процесс повторяется.

При работе двигателя в режиме малого газа и при небольшом перемещении , турбинное колесо обладает достаточным крутящим моментом для того, чтобы машина начала движение. Во время движения автомобиля рабочий процесс в гидротрансформаторе проходит аналогично, но до тех пор, пока обороты турбинного колеса не превысят обороты насосного колеса. Благодаря наличию обгонной муфты начинает раскручиваться реактор, прекращая направлять жидкость на лопатки насосного колеса, снимая дополнительное увеличение оборотов. Вступает в работу механизм блокировки.

При помощи поршня блокировочное кольцо фрикционным слоем прижимается к кольцевой поверхности, обеспечивая жёсткую связь насосного и турбинного колёс. Благодаря такой работе, двигатель не расходует лишнего топлива на преодоление внутренних потерь. Работа гидродинамического трансформатора постоянно находится под контролем бортового компьютера и автоматически управляется электронным блоком управления.

Конструкторские бюро и инженеры постоянно работают над усовершенствованием гидротрансформатора, повышая его надёжность. Однако в процессе эксплуатации возникают неисправности, требующие текущего ремонта или замены целого агрегата. К таким неисправностям приводят нарушения технологии изготовления, применение материалов, не соответствующих техническим условиям, наличие остаточных напряжений в местах сварки (из-за местного перегрева приводит к обрыву лопаток), некачественное приклеивание фрикционного слоя (приводит к преждевременному разрушению).

Эксплуатационные неисправности: применение масла, не соответствующего ТУ, несвоевременная замена масла и масляного фильтра, недоброкачественный контроль чистоты масла и масляного фильтра, несвоевременная замена деталей, пришедших в негодность. К нарушениям в работе гидродинамического трансформатора могут приводить различного рода механические повреждения, нарушения герметизации, а также сбой в работе электронного блока управления.

Проверка гидротрансформатора АКПП.

Для проверки работоспособности гидротрансформатора выполняется первичная диагностика, углублённая диагностика и анализ косвенных признаков неисправности специалистами СТО, демонтаж, разборка и подетальная диагностика с последующим ремонтом и инструментальной проверкой. При подозрении на нарушения работы гидродинамического трансформатора, водитель выполняет первичную диагностику, сбор информации, первичный анализ и заключение.

Проверить перед запуском двигателя количество и чистоту масла в КПП (на щупе или каплей масла на белой бумаге), прогреть двигатель и выполнить проверку повторно. При работающем двигателе обратить внимание на отсутствие посторонних шумов (внимательно прослушать в районе АКПП), а также запахов, связанных с перегревом трансформатора. Проверить, как ведёт себя машина во время включения/выключения передачи, разгона, убедиться, что двигатель не глохнет во время переключения передач, отсутствует вибрация, стуки в работе АКПП.

Проверить время разгона машины до 100 км/ч, убедиться, что время разгона находится в пределах допустимого условиями по технической эксплуатации данного автомобиля. При возникновении проблем с маслом необходимо проверить отсутствие его подтекания в районе КПП, при необходимости дозаправить или произвести замену масла и фильтра. Если причина устранилась, можно продолжать эксплуатацию машины, держа под постоянным контролем работу ГДТ.

Если же при выполнении контрольных проверок причина не устранилась, а замена масла и фильтра результата не дала, необходимо обратиться на СТО. Специалисты после подтверждения косвенных неисправностей снимают ГДТ, проводят его разборку, подетальную диагностику и ремонт.

Что нужно для проверки гидротрансформатора АКПП.

Для оценки работоспособности и определения поломки ГДТ необходим большой опыт в проведении этих работ. Специалисты снимают коды, проверяют давление масла, проводят тесты, снимают поддон, проверяют на отсутствие крупных металлических частиц, грязи, абразива, примесей от разрушения фрикционной накладки. Для выполнения перечисленных работ специальное оборудование не требуется. Необходим штатный инструмент для выполнения демонтажно-монтажных работ.

Для разборки необходим высокоточный токарный станок для снятия сварного шва и разборки. Далее выполняется тщательный визуальный осмотр, промывка деталей, очистка их от грязи, абразивных веществ, нагара, кусков разрушенного фрикциона. Осматриваются детали на отсутствие цветов побежалости (следов перегрева). Для обнаружения трещин в местах крепления лопаток ступицы могут применяться увеличительные линзы, 10-20 кратного увеличения, а также специальные проникающие окрашенные жидкости.

Необходима печь для выполнения приклейки фрикционной накладки, станок для выполнения выравнивания поверхности пластин. Все подшипники, обгонная муфта проверяются на отсутствие радиального люфта, механических повреждений, при необходимости проводится их замена. Для выполнения сварочных работ применяется специальный сварочный аппарат-автомат.

После сборки и сварки выполняется проверка герметичности установкой, имеющей ванну с жидкостью и специальное приспособление для подвода воздуха. Для проверки соосности требуется соответствующее приспособление, а также установка для проверки биения и основных размеров. Для проверки и регулировки балансировки необходим балансировочный станок. Набор этих станков, установок и приспособлений сводит до минимума возможность выполнения ремонта своими руками. Они имеются на СТО или в специальном механическом цеху, в котором выполняется диагностика и ремонт гидродинамических трансформаторов.

Подписывайтесь на наши ленты в

Казалось бы, это чисто гидравлический узел и ломаться там нечему, разве что протечь может… Но нет, современный гидротрансформатор много сложнее в устройстве, чем картинка в старом учебнике и скорее является узлом с ограниченным сроком службы, после чего должен пройти процедуру восстановления. Что же с ним происходит, что у него внутри и как это починить?

Как устроен «бублик»?

Основной задачей гидротрансформатора всегда было преобразование крутящего момента и оборотов: он работает как гидравлический редуктор, который умеет снижать обороты и повышать крутящий момент с коэффициентом трансформации до 2.4. Основана его работа на передаче энергии через поток жидкости - в данном случае трансмиссионного масла, которое мы все знаем как ATF (automatic transmission fluid).

Коленчатый вал мотора связан с насосным колесом, которое разгоняет жидкость и отправляет ее на турбинное колесо. Турбинное колесо в свою очередь связано с коробкой передач. Жидкость раскручивает турбинное колесо и отправляется обратно на насосное. Но перед этим она попадает на лопатки направляющего аппарата, выполненного в виде колеса-реактора, которые ускоряют поток жидкости и направляют его в сторону вращения.

Таким образом поток жидкости ускоряется до тех пор, пока скорости вращения насосного и турбинного колес не выравниваются, и тогда гидротрансформатор переходит в режим гидромуфты, при котором преобразования крутящего момента не происходит, а направляющий аппарат начинает свободно вращаться, не мешая току жидкости.

Чем больше разница скоростей вращения турбинного и насосного колес, тем больше ускоряется ток жидкости, но при этом она начинается нагреваться, а КПД гидротрансформатора падает - больше энергии уходит в нагрев. Когда же скорости вращения колес выравниваются, то в передаче момента через жидкость с большими потерями смысла нет.

Поэтому со временем в гидротрансформаторы стали внедрять элементы обычного фрикционного сцепления, основанного на трении. Называется это блокировкой гидротрансформатора. Суть блокировки - в соединении входного и выходного валов, чтобы передавать момент напрямую. Без нее старые машины с АКПП, как говорится, «не ехали».


На самых старых конструкциях блокировка срабатывала автоматически, за счет давления рабочей жидкости, но с появлением АКПП с электронным управлением функция стала управляться отдельным клапаном. Говорить же о способах реализации блокировки нужно в отдельной статье, потому что их великое множество. Но смысл один - соединять валы и временно исключать из цепочки передачи крутящего момента трансмиссионное масло.

А вскоре на фрикционы блокировки возложили задачи, сходные с задачами обычного сцепления механической КПП - при разгоне они немного смыкались, пробуксовывая и помогая передавать крутящий момент, а сама блокировка стала срабатывать очень рано, чтобы уменьшить потери в гидротрансформаторе. Собственно, современные гидромеханические «автоматы» уже нельзя назвать классическими - это уже некий гибрид.



И чем мощнее становились двигатели, тем сильнее нагревалась жидкость в ГТД, тем сложнее было обеспечить его охлаждение, и тем больше работы по передаче крутящего момента старались переложить на сцепление блокировки.

Что ломается в гидротрансформаторе?

Раз есть сцепление внутри «бублика», значит, оно изнашивается - вечных фрикционных пар не бывает. К тому же продукты их износа загрязняют внутренности ГТД, поток горячей жидкости с абразивом «выедает» металл лопаток и других внутренних частей. Также потихоньку стареют, выходят из строя от перегрева или просто разрушаются уплотнения-сальники, а иногда выходят из строя подшипники или даже ломаются лопасти турбинных колес.

Продукты износа фрикционной накладки попадают и в саму АКПП, ведь охлаждение ГТД идет прокачкой масла через насос коробки и общий теплообменник. А в гидроблоке АКПП (о нем нужно рассказывать отдельно) есть еще много разных мест, где грязь может что-то забить или жидкость может проточить лишние отверстия, повредить соленоидные клапаны, замкнуть проводники…

В общем, со временем ГТД становится основным источником «грязи» в АКПП, которая обязательно выведет ее из строя. У некоторых АКПП проблема осложняется тем, что материал накладок «приклеен» к основе, и по мере износа в жидкость начинают попадать клеющие вещества, ускоряя процессы загрязнения в разы.

Таким образом, поживший «бублик» нужно менять или ремонтировать, пока он не сломал всю коробку передач. К слову, старые АКПП, у которых блокировка срабатывала редко, только на высших передачах или ее не имелось вовсе, имеют заметно большие интервал замены масла и ресурс.

Наиболее печальный случай

К чему это приводит, можно увидеть на примере широко распространенной 5-ступенчатой АКПП Mercedes 722.6. Она ставилась на несколько десятков моделей Mercedes-Benz, Jaguar, Chrysler, Dodge, Jeep и SsangYong c 1996 года и ставится по сей день.

В этой коробке передач гидротрансформатор блокируется на всех передачах, и специальный клапан регулирует его прижатие. Даже при плавном разгоне включается частичная блокировка, а при резком блокировка включается почти сразу. Машина получается экономичной и динамичной.



А вот износ закладок блокировки идет быстро, и если не менять масло вовремя, то при пробегах свыше ста тысяч километров плавная блокировка становится не такой уж и плавной, заставляя машину дергаться, а продукты износа повреждают постоянно работающий клапан соленоида блокировки, усиливая эффект.

Но даже если масло менять, то все равно к пробегу тысяч в двести километров накладки ГТД износятся и создадут очень много мусора, который разрушит клапан и, разумеется, коробка начнет работать жестко, с ударами. В итоге, если вовремя не отремонтировать источник мусора, вся АКПП отправится на свалку.

Ремонт гидротрансформаторов

Сам «бублик» в сборе - дорогое удовольствие. Его стоимость измеряется десятками тысяч рублей. Для примера: «бублик» в сборе для коробки ZF от Audi A6 C5 и Audi A4 B7 будет стоить около 60 000 рублей, а для BMW 5 series E60, 7 series E66 и X5 E53 - около 120 000 рублей.

Стоимость ремонта же начинается с 3 500 — 5 000 рублей, без учета стоимости снятия АКПП, разумеется. Для самого простого ремонта «бублик» надо разрезать, вымыть, отдефектовать, заменить уплотнения, заменить фрикционные накладки и гидроцилиндры при необходимости, спаять и отбалансировать.



Полностью выходит из строя этот узел только при самых запущенных случаях, и обычно его удается реанимировать полностью. Но как и в любом деле, тут важен профессионализм исполнителей. Ведь точная гидравлика работает с высокими оборотами и при высокой скорости тока жидкости, малейшее нарушение соосности валов, дисбаланс или механические повреждения внутренностей могут вывести из строя не только сам «бублик», но и АКПП, ее насос или даже двигатель машины.

А как узнать, что гидротрансформатор вышел из строя?

Если масло в АКПП быстро темнеет после замены, машина стала расходовать больше топлива, ощущаются рывки при равномерном движении или при торможении двигателем, то - скорее к мастеру проверять круглый железный «бублик». Не так уж дорог его ремонт, а неисправный, дел он может натворить очень много.

Как сделать так, чтобы гидротрансформатор подольше не ломался?

Инструкция будет простой. Во-первых, не нужно увлекаться ездой на высоких оборотах - гидротрансформаторы в таком режиме изнашиваются быстрее. Во-вторых, поменьше перегревайте машину. В-третьих, регулярно меняйте масло.