» » Электрогидравлическая рулевая машина на судне. Рулевое устройство, составные части и их назначение

Электрогидравлическая рулевая машина на судне. Рулевое устройство, составные части и их назначение

Рулевое устройство служит для изменения направления движения судна, обеспечивая перекладку пера руля на некоторый угол в заданный промежуток времени. Основными его частями являются:

· Пост управления;

· Рулевая передача от поста управления к рулевому двигателю:

· Рулевой двигатель;

· Рулевой привод от рулевого двигателя к баллеру руля;

· Руль или поворотная насадка, непосредственно обеспечивающие управляемость судна.

Основные элементы рулевого устройства показаны на рис. 3.10.

Руль - основной орган, обеспечивающий работу устройства. Он действует только на ходу судна и в большинстве случаев располагается в кормовой части. Обычно на судне один руль. Но иногда для упрощения конструкции руля (но не рулевого устройства, которое при этом усложняется) ставят несколько рулей, сумма площадей которых должна быть равной расчетной площади пера руля.

Основной элемент руля - перо. По форме поперечного сечения перо руля может быть: а) пластинчатым или плоским, б) обтекаемым или профилированным.

Рис.3.10 Рулевое устройство

1 – перо руля; 2 – баллер; - 3 – румпель; 4 – рулевая машина с рулевым приводом; 5 – гельмпортовая труба; 6 – фланцевое соединение; 7 – ручной привод.

Преимущество профилированного пера руля в том, что сила давления на него превосходит (на 30% и более) давление на пластинчатый руль, что улучшает поворотливость судна. Отстояние центра давления такого руля от входящей (передней) кромки руля меньше, и момент, необходимый для поворота профилированного руля, также меньше, чем у пластинчатого руля. Следовательно, потребуется и менее мощная рулевая машина. Кроме того, профилированный (обтекаемый) руль улучшает работу винта и создает меньшее сопротивление движению судна.

Форма проекции пера руля на ДП зависит от формы кормового образования корпуса, а площадь - от длины и осадки судна (L и d), У морских судов площадь пера руля выбирается в пределах 1,7-2,5% от погруженной части площади диаметральной плоскости судна. Ось баллера является осью вращения пера руля. Баллер руля в кормовой подзор корпуса входит через гельмпортовую трубу. На верхней части баллера (голове) крепится на шпонке рычаг, называемый румпелем, служащий для передачи вращательного момента от привода через баллер на перо руля.

Судовые рули принято классифицировать по следующим признакам:

По способу крепления пера руля с корпусом судна различают рули:

а) простые - с опорой на нижнем торце руля или со многими опорами на рудерпосте;

б) полуподвесные – с опорой на специальном кронштейне в одной промежуточной точке по высоте руля;

в) подвесные – висящие на баллере.

По положению оси вращения относительно пера руля различают рули:

а) небалансирные – с осью, размещенной у передней (входящей) кромке пера;

б) балансирные – с осью, расположенной на некотором расстоянии от передней кромки руля.

Рис.3.11 Простой небалансирный руль.

Рис.3.12 Полуподвесной небалансирный руль.

Рис.3.13 Подвесной небалансирный руль.

Рис.3.14 Простой балансирный руль.

Рис.3.15 Полуподвесной балансирный руль (полуподвесной)

Рис.3.16 Подвесной балансирный руль.

Рулевой привод предназначается для передачи команд от штурмана из рулевой рубки к рулевой машине в румпельном отделение. Наибольшее применение находят электрическая или гидравлическая передачи. На малых судах применяются валиковые или тросовые приводы, в последнем случае этот привод называют - штуртросовым.

Контрольные приборы следят за положением рулей и -исправным действием всего устройства.

Приборы управления передают приказания рулевому при управлении рулем вручную.

Рулевое устройство - одно из самых важных устройств, обеспечивающих живучесть судна. На случай аварии рулевое устройство имеет дублирующий пост управления рулем, состоящий из штурвала и ручного при­вода, расположенных в румпельном отделении или вблизи от него.

При малых скоростях судна рулевые устройства становятся недостаточно эффективными и порой делают судно совершенно неуправляемым. Для повышения маневренности на современных судах некоторых типов (промысловых, буксирах, пассажирских и специальных судах) устанавливают активные рули, поворотные насадки, подруливающие устройства или крыльчатые движители. Эти устройства позволяют судам самостоятельно выполнять сложные маневры в открытом море, а также проходить без вспомогательных буксиров узкости, входить на акваторию рейда и гавани и подходить к причалам, разворачиваться и отходить от них, экономя на этом время и средства.

Активный руль (рис.3.17) представляет собой перо обтекаемого руля, на задней кромке которого установлена насадка с гребным винтом, приводящимся в движение от валиковой конической передачи, проходящей через пустотелый баллер и вращающийся от электродвигателя, установленного на голове баллера. Существует тип активного руля с вращением винта от электродвигателя водяного исполнения (работающего в воде) вмонтированного в перо руля. При перекладке активного руля на борт, работающий в нем винт создает упор, разворачивающий корму относительно оси поворота судна. При работе гребного винта активного руля на ходу судна скорость судна увеличивается на 2-3 узла. При остановленных главных двигателях от работы гребного винта активного руля судну сообщается малый ход до 5 узл.

Рис.3.17 Активный руль с конической передачей на винт .

Поворотная насадка , установленная вместо руля, при перекладке на борт отклоняет отбрасываемую гребным винтом струю воды, реакция которой вызывает разворот кормовой оконечности судна. Поворотные насадки представляют собой направляющую насадку гребного винта, укрепленную на вертикальном баллере, ось которого пересекается с осью гребного винта в плоскости диска винта (рис.29). Поворотная направляющая насадка является частью движительного комплекса и одновременно служит органом управления, заменяя руль. Выведенная из ДП насадка работает как кольцевое крыло, на котором возникает боковая подъемная сила, вызывающая поворот судна. Возникающий на баллере насадки гидродинамический момент (как на переднем, так и нa заднем ходу) стремится увеличить угол ее перекладки. Чтобы снизить влияние этого отрицательного момента, в хвостовой части насадки устанавливается стабилизатор с симметричным профилем. Угол поворота насадки относительно ДП корабля составляет, как правило, 30-35°.

Рис.3.18. Поворотная насадка.

Подруливающие устройства выполняются обычно ввиде туннелей, проходящих через корпус, в плоскости шпангоута в кормовой и

Рис.3.19 Принципиальная схема подруливающего устройства

Морской сайт Россия нет 24 ноября 2016 Создано: 24 ноября 2016 Обновлено: 24 ноября 2016 Просмотров: 16118

Рулевое устройство совокупность механизмов, агрегатов и узлов, обеспечивающих управление судном.

Основными конструктивными элементами любого рулевого устройства являются:

рабочий орган - перо руля (руль) или поворотная направляющая насадка;

баллер, соединяющий рабочий орган с рулевым приводом;

рулевой привод, передающий усилие от рулевой машины к рабочему органу;

рулевая машина, создающая усилие для поворота рабочего органа;

привод управления, связывающий рулевую машину с постом управления.

На современных судах устанавливают пустотелые обтекаемые рули, состоящие из горизонтальных ребер и вертикальных диафрагм, покрытых стальной обшивкой (рис. 1, а). Обшивку крепят к раме электрозаклепками. Внутреннее пространство руля заполняют смолистыми веществами или самовспенивающимся пенополиуретаном ППУ3С.

В зависимости от расположения оси вращения различают балансирные (рис. 1, д, в), небалансирные (рис. 1, б) и полубалансирные рули . Ось вращения балансирного руля проходит через перо руля, а небалансирного - совпадает с передней кромкой пера. У полубалансирного руля в нос от оси вращения выступает только нижняя часть пера. Момент сопротивления повороту балгнсирного или полубалансирного руля меньше, чем небалансирного, и соответственно меньше требуемая мощность рулевой машины.

По способу крепления рули разделяют на подвесные и простые.

Подвесной руль крепят горизонтальным фланцевым соединением к баллеру и устанавливают только на малых и малых маломерных добывающих судах.Простой одноопорный балансирный руль (см. рис. 1, а) штырем упирается в упорный стакан пятки ахтерштевня. Для уменьшения трения цилиндрическая часть штыря имеет бронзовую облицовку, а в пятку ахтерштевня вставлена бронзовая втулка. Соединение руля с баллером - горизонтальное фланцевое на шести болтах или конусное. При конусном соединении коническая концевая часть баллера вставляется в конусное отверстие верхней торцевой диафрагмы руля и плотно затягивается гайкой, доступ к которой обеспечивается через крышку, поставленную на винтах, входящих в обшивку руля. Изогнутый баллер дает возможность раздельного демонтажа руля и баллера (при их взаимном развороте).

Простой двухопорный небалансирный руль (см. рис. 1, б) сверху закрыт листовой диафрагмой и литой головкой, имеющей фланец для соединения руля с баллером и петлю под верхнюю штыревую опору. В петлю рудерпоста вставляют бакаутовые, бронзовые или другие втулки.

Недостаточная жесткость нижней опоры балансирных рулей часто становится причиной вибрации кормы судна и руля. Этот недостаток отсутствует у балансирного руля со съемным рудерпостом (см. рис. 1, в). В перо такого руля вмонтирована труба, через которую проходит съемный рудерпост. Нижний конец рудерпоста закрепляют конусом в пятке ахтерштевня, а верхний крепят фланцем к ахтерштевню. Внутри трубы устанавливают подшипники. Рудерпост в местах прохождения через подшипники имеет бронзовую облицовку. Крепление руля к баллеру - фланцевое.

Рис. 1. Рабочие органы рулевых устройств: а - руль одноопорный балансирный; б - руль двухопорный небалансирный; в - руль баланснрный со съемным рудерпостом; г - активный руль; д - поворотная направляющая насадка со стабилизатором; 1 - баллер; 2 - фланец; 3 - обшивка пера руля; 4 - наделка-обтекатель; 5 - вертикальная диафрагма; 6 - горизонтальное ребро; 7 - пятка ахтерштевня; 8 - гайка; 9 - шайба; 10 - рулевой штырь; 11 - бронзовая облицовка штыря; 12 - бронзовая втулка (подшипник); 13 - упорный стакан; 14 - канал для демонтажа упорного стакана; 15 - гельмпортовая труба; 16 - петля рудерпоста; 17 - рудерпост; 18 - бакаут; 19 - фланец рудерпоста; 20 - съемный рудерпост; 21 - вертикальная труба; 22 - гребной винт руля; 23 - редуктор с обтекателем; 24 - стабилизатор; 25 - поворотная направляющая насадка; 26 - гребной вал; 27 - гребной винт

В пере активного руля (рис. 1, г) помещен вспомогательный гребной винт . При перекладке руля направление упора вспомогательного винта изменяется и возникает дополнительный момент, поворачивающий судно. Направление вращения вспомогательного винта противоположно направлению вращения основного. Электродвигатель размещается в пере руля или в румпельном отделении. В последнем случае электродвигатель непосредственно соединен с вертикальным валом, передающим вращение редуктору движителя. Винт активного руля может обеспечить судну скорость до 5 уз.

На многих судах промыслового флота вместо руля устанавливают поворотную направляющую насадку (рис. 1, д), которая создает такую же, как и руль, боковую силу при меньших углах перекладки. Причем момент на баллере насадки примерно в два раза меньше момента на баллере руля. Для обеспечения устойчивого положения насадки при перекладках и увеличения ее рулевого действия к хвостовой части насадки в плоскости оси баллера крепят стабилизатор. Конструкция и крепление насадки аналогичны конструкции и креплению балансирного руля.

Баллер - изогнутый или прямой стальной цилиндрический брус, выведенный через гельмпортовую трубу в румпельное отделение. Соединение гельмпортовой трубы с наружной обшивкой и настилом палубы - водонепроницаемое. В верхней части трубы устанавливают уплотнительный сальник и подшипники баллера, которые могут быть опорными и упорными.

Рулевое устройство должно иметь приводы: главный и вспомогательный, а при их расположении ниже грузовой ватерлинии дополнительный аварийный, размещенный выше палубы переборок. Вместо вспомогательного привода допускается установка сдвоенного главного, состоящего из двух автономных агрегатов. Все приводы должны действовать независимо друг от друга, но, как исключение, допускается наличие у них некоторых общих деталей. Главный привод должен работать от источников энергии, вспомогательный может быть ручным.

Конструкция привода руля зависит от типа рулевой машины. На судах промыслового флота устанавливают электрические и электрогидравлические рулевые машины. Первые выполняют в виде электродвигателя постоянного тока, вторые - в виде комплекса электродвигатель - насос в сочетании с плунжерным, лопастным или винтовым гидравлическим приводом. Ручные рулевые машины в сочетании с штуртросовым, валиковым или гидравлическим рулевым приводом встречаются только на малых и маломерных добывающих судах.

Рис. 2. Приводы руля: а - секторно-эубчатый; б - штуртросовый; в - гидравлический плунжерный; г - гидравлический лопастный; д - гидравлический винтовой; е - румпель-таль; 1 - штурвал и рулевая колонка вспомогательного привода; 2 - румпель; 3 - червячный редуктор; 4 - зубчатый сектор главного привода; 5 - электродвигатель; 6 - пружинный амортизатор; 7 - баллер; 8 - балансирный руль; 9 - зубчатый сектор вспомогательного привода; 10 - червяк; 11 - штуртрос; 12 - направляющие роульсы; 13 - буферные пружины; 14 - сектор; 15 - поршень-плунжер; 16 - гидроцилиндр; 17 - насос; 18 - предохранительный клапан; 19 - корпус; 20 - секторовидная камера; 21 - крылатка с лопастями; 22 - стакан с продольными канавками; 23 - кольцевой поршень; 24 - стакан с винтовыми канавками; 25 - крышка; 26 - квадратная головка; 27 - рабочая полость цилиндра; 28 - шпоночная канавка; 29 - ходовой конец лопаря; 30 - подвижный блок; 31 - неподвижный блок

На многих мало и среднетоннажных судах устанавливают секторнозубчатый рулевой привод (рис. 2, а). При работе электродвигателя свободно насаженный на баллер зубчатый сектор через пружинные амортизаторы передает усилие жестко закрепленному на баллере продольному румпелю. Амортизаторы смягчают толчки, возникающие при пуске электродвигателя или при ударах волн о перо руля. Червячный редуктор обеспечивает самоторможение привода. В качестве вспомогательного привода предусмотрен дополнительный жестко насаженный на баллер зубчатый сектор. Работу сектора обеспечивает ручная штурвальная колонка через валиковую проводку и дополнительный червячный редуктор.

На маломерных добывающих судах применяют секторный штуртросовый привод (рис. 2, б). Усилие рулевой машины через штуртрос передается жестко насаженному на баллер сектору. Штуртрос выполняют иэ стального троса с участком цепи Галля в средней части или целиком из цепи. Обе ветви штуртроса от сектора через направляющие роульсы идут к звездочке или барабану рулевой машины. В последнем варианте при вращении барабана одна ветвь стального троса выбирается, а другая - потравливается. Слабину штуртроса выбирают винтовыми талрепами, толчки смягчаются буферными пружинами.

Наибольшее распространение на промысловом флоте получили гидравлические рулевые приводы: плунжерный, лопастный, винтовой.

Насос гидравлического плунжерного привода (рис. 2, в) при работе электродвигателя перекачивает рабочую жидкость из одного гидроцилиндра в другой, что приводит к перемещению шарнирно соединенного с жестко насаженным на баллер румпелем плунжера и повороту баллера. При ударе волны о перо руля давление в одном из гидроцилиндров возрастает и предохранительный клапан перепускает часть рабочей жидкости в другой цилиндр, амортизируя удар. Специальное устройство обеспечивает автоматический возврат пера руля в первоначальное положение после спада давления в гидроцилиндре. На многих судах установлены сдвоенные плунжерные гидравлические рулевые приводы. Параллельно работающие две пары гидроцилиндров и два насоса обеспечивают возможность перекладки руля любой парой гидронасосов. В этом случае на судне может отсутствовать вспомогательный привод руля.

Румпель гидравлического лопастного рулевого привода, выполненный в виде крылатки с лопастями, находится в закрытом цилиндрическом корпусе, разделенном неподвижными перегородками на несколько рабочих камер, заполненных рабочей жидкостью (на рис. 2, г две камеры). Зазоры между лопастями и корпусом, неподвижными перегородками и баллером уплотняются. При перекачке рабочей жидкости из одних полостей камер в другие создается разность давлений, вызывающая поворот румпеля и баллера.

Винтовой гидравлический привод (рис. 2, д) состоит из неподвижного корпуса, средняя часть которого выполняет роль цилиндра. В цилиндр помещен кольцевой поршень: его внутренняя поверхность имеет в верхней части винтовые, а в нижней - продольные канавки. На головку баллера жестко надет стакан с продольными канавками. Другой стакан с винтовыми канавками неподвижно прикреплен к крышке корпуса. При подаче жидкости в рабочую полость цилиндра поршень получает поступательное движение, перемещаясь по винтовым канавкам неподвижного стакана, поворачивается и через стакан с продольными канавками поворачивает баллер.

Кроме перечисленных на промысловых судах изредка встречаются рулевые приводы других типов, в основном в качестве вспомогательных или аварийных. В исключительных аварийных ситуациях могут быть применены две румпельтали.

Таль - это два блока, между которыми натянут трос (лопарь, рис. 2, е). Конец лопаря, за который производят тягу, называют ходовым , а закрепленный конец - коренным . Блок состоит из корпуса, внутри которого находятся один или несколько шкивов, вращающихся на оси (нагеле). Тали могут быть различной конструкции. Наиболее простым видом тали является гордень неподвижный одношкивный блок, позволяющий изменить направление тяги (направляющий блок). Гордень не дает выигрыша в усилии.

Другой вид - хваттали это двух и одношкивные блоки, причем коренной конец лопаря закреплен на одношкивном блоке.

Тали, состоящие из блоков с одинаковым числом шкивов, называют ганцами , а из блоков с числом шкивов более трех в каждом блоке - гинями . При работе тали во всех ветвях лопаря возникает усилие, равное усилию, приложенному к ходовому концу, поэтому общее усилие, передаваемое талью, равно сумме усилий в ветвях подвижного блока, включая усилие и в ходовом конце, если он сходит с этого блока. Один блок тали скобой крепят к предусмотренному в шпангоуте отверстию, другой - к сектору или румпелю. Ходовые лопари через систему направляющих блоков выводят к ближайшей лебедке. Принцип работы аналогичен работе штуртросового привода .

Дистанционное управление рулевой машиной из рулевой рубки обеспечивают телединамические передачи, называемые рулевыми телепередачами или рулевыми телемоторами. На современных промысловых судах нашли применение гидравлические и электрические рулевые телепередачи. Часто они дублируются или комбинируются в электрогидравлические.

Электрическая телепередача состоит из специального контроллера, расположенного в рулевой тумбе и связанного электрической системой с пусковым устройством рулевой машины. Управление контроллером осуществляется с помощью штурвала, рукоятки или кнопки.

Гидравлическая телепередача состоит из ручного насоса, приводимого в работу штурвалом, и системы трубок, связывающих насос с пусковым устройством рулевой машины. Рабочей жидкостью системы служат незамерзающая смесь воды с глицерином или минеральное масло.

Управление главным и вспомогательным рулевыми приводами (работающими от источника энергии) - независимо и производится с ходового мостика, а также из румпельного отделения. Время перехода с главного на вспомогательный привод не должно превышать 2 мин. При наличии постов управления главным рулевым приводом в рулевой и промысловой рубках выход из строя системы управления с одного поста не должен препятствовать управлению с другого поста. Время перекладки полностью погруженного руля или поворотной насадки главным приводом (при наибольшей скорости переднего хода) с 35° одного борта на 30° другого не должно превышать 28 с, вспомогательным (при скорости, равной половине наибольшей скорости переднего хода или 7 уз, в зависимости от того, какое значение больше) с 15° одного борта на 15° другого - 60 с, аварийным (при скорости не менее 4 уз) не ограничивается.

Угол,перекладки руля определяют по установленному у каждого поста управления аксиометру. Кроме того, на секторе рулевого привода или других деталях, жестко связанных с баллером, наносят шкалу для определения действительного положения руля. Автоматическую согласованность между скоростью, направлением вращения и положением штурвала и скоростью, стороной и углом перекладки руля обеспечивает сервомотор.

Ограничители перекладки руля выполняют в виде выступов на пере руля и ахтерштевне, которые упираются друг в друга при максимально допускаемом угле перекладки руля, или в виде книц, приваренных к палубе, в которые упирается сектор привода руля. Все механические рулевые приводы дополнительно имеют конечные выключатели, отключающие механизмы прежде, чем руль дойдет до ограничителя поворота. В гидравлическом плунжерном приводе ограничителем поворота руля служат донышки гидроцилиндров привода.

Тормоз (стопор) руля предназначен для удержания руля при аварийном ремонте или при переходе с одного привода на другой. Наиболее часто применяют ленточный стопор, зажимающий непосредственно баллер руля. Секторные приводы имеют колодочные стопоры, в которых тормозная колодка прижимается к специальной дуге на секторе. В гидравлических приводах роль стопора выполняют клапаны, перекрывающие доступ рабочей жидкости к приводам.

Удержание судна на заданном курсе при благоприятных погодных условиях без участия рулевого обеспечивает авторулевой, принцип работы которого основан на применении гирокомпаса или магнитного компаса. Органы обычного управления связаны с авторулевым. Когда судно ложится на заданный курс, руль по аксиометру устанавливают в нулевое положение и включают авторулевой. Если под действием ветра, волнения или течения судно отклоняется от заданного курса, электродвигатель системы, получив импульс от датчика компаса, обеспечивает возвращение судна на заданный курс. При изменении курса или маневрировании авторулевой отключают и переходят на обычное рулевое управление.

Рулевая машина - один из основных вспомогательных механизмов судна, так как она обеспечивает его управляемость и безопасность плавания. В соответствии с условиями плавания рулевая машина поворачивает баллер руля или насадку на заданные углы для удержания судна на курсе или для маневрирования.

Рулевые приводы, передающие усилия непосредственно баллеру руля, выполняются с механическими или гидравлическими передачами, а их двигатели могут быть паровыми и электрическими. В настоящее время паровые рулевые машины на новых судах не устанавливаются.

Рулевые машины с механической передачей от электродвигателя принято называть электрическими, а машины с гидравлическими передачами от электродвигателя - гидравлическими. Современные рулевые машины устанавливают непосредственно у головы баллера в румпельном помещении, а для управления ими применяются электрические или гидравлические телепередачи.

Ко всякому рулевому устройству предъявляются следующие требования:

  • надежность и безопасность работы при любых навигационных условиях;
  • живучесть;
  • обеспечение заданного угла и заданной скорости перекладки руля при максимальной скорости судна;
  • возможность быстрого перехода от основного вида управления к вспомогательному;
  • возможность управления с нескольких мест;
  • удобство управления, наименьшие габаритные размеры и масса;
  • простота устройства, ухода и обслуживания;
  • экономичность.

Правилами Регистра сформулированы следующие основные требования к рулевому устройству судна.

  • Рулевое устройство, или устройство с поворотной насадкой, должно иметь два привода: главный и вспомогательный.
  • При действии главного рулевого привода рулевое устройство должно обеспечить маневрирование судна с перекладкой полностью погруженного руля (насадки) с борта на борт при максимальной скорости переднего хода; при этом время перекладки, руля (насадки) с 35° одного борта на 30° другого борта не должно превышать 28 с.
  • Вспомогательный рулевой привод должен обеспечивать маневрирование судна с перекладкой полностью погруженного руля (насадки) с борта на борт при скорости переднего хода, равной 1/2 максимальной скорости судна, но не менее 7 уз.; при этом время перекладки руля (насадки) с 15° одного борта на 15° другого борта не должно превышать 60 с.
  • Вспомогательного привода не требуется, если главный рулевой привод состоит из двух независимо действующих агрегатов, каждый из которых удовлетворяет требованиям к главному приводу. Двигатели рулевых приводов должны допускать их перегрузку по моменту не менее 1,5 расчетного момента в течение 1 мин.
  • Вспомогательный ручной привод должен быть самотормозящим или иметь стопорное устройство. Он должен обеспечить требования к нему при работе не более четырех человек с усилием на рукоятках штурвала не более 160Н на каждого работающего.
  • Конструкция приводов должна обеспечивать переход с основного рулевого привода на запасной за время не более 2 мин.
  • Рулевое устройство должно иметь тормоз или иное приспособление, обеспечивающее удержание руля в любом положении. На рулевом приводе должна быть шкала для определения действительного положения руля с ценой деления не более 1º.
  • Все детали рулевого привода должны быть рассчитаны на усилия, соответствующие моменту (кНм) на баллере не менее

М пр = 1,135 R ен d -4

где d - диаметр головки баллера, см; R eн - верхний предел текучести материала баллера, МПа.

При этом напряжения и деталях привода не должны превышать 0,95 предела текучести материала.

При действии расчетного крутящего момента приведенные напряжения в деталях рулевых приводов не должны превышать 0,4 предела текучести материала.

Рулевое устройство современных судов является достаточно точным, технически надежным и чувствительным. Рулевое устройство рассматривается как одно из наиболее важных устройств и систем управления судном, оказывающее непосредственное влияние на обеспечение безопасности плавания судна. Поэтому современное рулевое устройство строится по принципу «структурной избыточности» (дублирования) систем: если один из элементов рулевого устройства выходит из строя, то обычно хватает нескольких секунд (или десятков секунд) для того, чтобы перейти на альтернативное устройство управления рулем (при условии, что экипаж достаточно натренирован).

Поскольку рулевое устройство играет такую важную роль в обеспечении безопасности плавания судна, поскольку от него так много зависит, а судовые экипажи полагаются на него в такой большой степени, — огромное внимание уделяется вопросам создания эффективных и надежных конструкций рулевого устройства, правильности его монтажа и установки, грамотной технической эксплуатации и эффективному обслуживанию рулевого устройства, своевременному выполнению необходимых проверок, обеспечению должной натренированности экипажей (в первую очередь — судоводителей, электромехаников, матросов) в переходе с одного режима управления рулем на другой.

Основные требования к конструкции, установке и эксплуатации рулевого устройства на судне определены в следующих документах:

  1. «СОЛАС-74» — правила, касающиеся технических требований к рулевому устройству;
  2. «СОЛАС-74», Правило V/24, — «Использование системы управления курсом и/или системы управления судном по заданной траектории»;
  3. «СОЛАС-74», Правило V/25, — «Работа главного источника электрической энергии и/или рулевого привода»;
  4. «СОЛАС-74», Правило V/26, — «Рулевой привод: испытания и учения»;
  5. Правила Классификационных обществ, касающиеся рулевых устройств;
  6. Рекомендации по эксплуатационным требованиям к системам управления курсом (Резолюция MSC.64(67), Приложение 3, и Резолюция MSC.74(69), Приложение 2);
  7. «Bridge Procedures Guide», пп. 4.2, 4.3.1-4.3.3, Annex A7;
  8. Устав службы на судах Министерства морского флота Союза ССР;
  9. «РШС-89»;
  10. Документы и «Руководства» по «СУБ» конкретной судоходной компании;
  11. Дополнительные требования «Прибрежных Государств».

В соответствии с Правилом V/26(3.1), на ходовом мостике и в румпельном отделении судна должны быть постоянно вывешены простые инструкции по эксплуатации рулевого привода с блок-схемой, показывающей порядок переключения систем дистанционного управления рулевым приводом и силовых агрегатов рулевого привода.


Рулевое устройство: а - обыкновенный руль; b - балансирный руль; с - полубалансирный руль (полуподвесной); d - балансирный руль (подвесной); е - полубалансирный руль (полуподвесной)

«Международная палата судоходства» (ICS) разработала «Руководство по рутинным проверкам рулевого устройства», которое позднее в полном объеме вошло в Правило V/26 «СОЛАС-74»:

  • Дистанционное ручное управление рулем — должно быть опробовано всякий раз после продолжительного управления авторулевым и перед входом в районы, где судовождение требует особой осторожности;
  • Дублирующие силовые устройства управления рулем: в районах, где судовождение требует особой осторожности, следует использовать более одного силового устройства управления рулем, если возможна одновременная работа нескольких таких устройств;
  • Перед отходом из порта — в пределах 12 часов до отхода — выполнить проверки и опробовать рулевое устройство, включая, насколько это применимо, проверку работы следующих узлов и систем:
    • главное рулевое устройство;
    • вспомогательное рулевое устройство;
    • все системы контроля дистанционного управления рулем;
    • пост управления рулем на мостике;
    • аварийный источник питания;
    • соответствие показаний аксиометра действительным положениям пера руля;
    • предупредительная сигнализация об отсутствии питания в системе дистанционного управления рулем;
    • предупредительная сигнализация об отказе силового блока рулевого устройства;
    • другие средства автоматики.
  • Контроль и проверки — должны включать:
    • полную перекладку руля с борта на борт и ее соответствие требуемым характеристикам рулевого устройства;
    • визуальный осмотр рулевого устройства и его соединительных связей;
    • проверку связи между ходовым мостиком и румпельным отделением.
  • Процедуры перехода с одного режима управления рулем на другой: все члены судового комсостава, имеющие отношение к использованию и/или технической эксплуатации рулевого устройства, должны изучить эти процедуры;
  • Тренировки по аварийному управлению рулем — должны проводиться, по крайней мере, каждые три месяца и должны включать непосредственное управление рулем из румпельного отделения, процедуры связи из этого помещения с ходовым мостиком и, где это возможно, использование альтернативных источников питания;
  • Регистрация: в судовом журнале должны делаться записи о выполнении контроля и указанных проверок рулевого устройства, а также о проведении тренировок по аварийному управлению рулем.

ВПКМ должен в полном объеме выполнять требования по эксплуатации рулевого устройства и авторулевого, содержащиеся в нормативных и организационно-распорядительных документах.

ВПКМ контролирует правильность удержания судна на курсе авторулевым. Установка отсчет курса на авторулевом и поправки к нему выполняется в соответствии с инструкцией по эксплуатации авторулевого с обязательным участием ВПКМ, т. к. рулевой, самостоятельно устанавливая отсчет, следит за тем, чтобы рыскание судна было симметричным, и невольно вводит собственную поправку в заданный курс.


Сигнализация об отклонении судна от заданного курса, где она имеется, должна быть всегда включена, когда судно управляется авторулевым, и должна быть отрегулирована в соответствии с преобладающими погодными условиями.

Если сигнализация перестает использоваться, капитан должен быть немедленно поставлен в известность.

Использование сигнализации никоим образом не освобождает ВПКМ от обязанности часто контролировать точность удержания авторулевым заданного курса.

Несмотря на сказанное выше, вахтенный ПКМ всегда должен иметь в виду необходимость поставить человека на руль и заблаговременно перейти с автоматического управления рулем на ручное с тем, чтобы безопасным образом разрешить любую потенциально опасную ситуацию.

Если судно управляется авторулевым, то в высшей степени опасно позволить ситуации дойти до такой стадии, когда ВПКМ будет вынужден прервать непрерывное наблюдение, чтобы предпринять необходимые чрезвычайные действия без помощи рулевого.

Вахтенный ПКМ обязан:

  • Четко знать порядок перехода с автоматического управления рулем на ручное, а также на запасное и аварийное рулевое управление (все варианты перехода с одного способа управления рулем на другой должны быть ясно изображены на мостике);
  • Не менее одного раза за вахту осуществлять переход с автоматического управления рулем на ручное и обратно (переход всегда должен осуществляться либо самим вахтенным ПКМ, либо под его непосредственным контролем);
  • Во всех случаях опасного сближения с судами заблаговременно переходить на ручное управление рулем;
  • Плавание в стесненных водах, СРД, при ограниченной видимости, в штормовых условиях, во льдах и других сложных условиях осуществлять, как правило, при ручном управлении рулем (в необходимых случаях включать в работу второй насос гидравлического привода рулевой машины).

В соответствии с Правилом V/24 «СОЛАС-74», в районах высокой интенсивности, в условиях ограниченной видимости и во всех других опасных для плавания ситуациях, если используются системы управления курсом и/или по заданному пути, должна быть предусмотрена возможность немедленного перехода на ручное управление рулем.


Судовой мостик

В вышеупомянутых обстоятельствах вахтенный помощник капитана должен иметь возможность без промедления использовать для управления судном квалифицированного рулевого, который в любой момент должен быть готов приступить к управлению рулем.

Переход с автоматического управления рулем на ручное, и наоборот, должен производиться ответственным лицом командного состава или под его наблюдением.

Ручное управление рулем должно испытываться после каждого продолжительного использования систем управления курсом и/или по заданному пути, и перед входом в районы, где судовождение требует особой осторожности.

В районах, где судовождение требует особой осторожности, на судах должно работать более одного силового агрегата рулевого привода, если такие агрегаты могут работать одновременно.

Вахтенный помощник капитана должен отдавать отчет в том, что внезапный выход авторулевого из строя может повлечь риск столкновения с другим судно, посадки судна на мель (при плавании вблизи навигационных опасностей) либо другие неблагоприятные последствия. По этой же причине обеспечение технической надежности и грамотной эксплуатации авторулевых становится объектом все более пристального внимания.

Ситуация: Внезапный разворот лайнера «Norwegian Sky» у входа в пролив Хуан-де-Фука

19 мая 2001 года пассажирский лайнер «Norwegian Sky» (длина 258 м, водоизмещение 6000 тонн) следовал в канадский порт Ванкувер, имея на борту 2000 пассажиров. При входе в пролив Juan de Fuka судно на высокой скорости внезапно пошло на циркуляцию. Неожиданные динамические нагрузки в сочетании с креном судна до 8° привели к ранениям и травмам 78 пассажиров.

По сообщению Береговой Охраны США, которая производила расследование инцидента, внезапное изменение курса судна произошло в тот момент, когда старший помощник капитана (first officer) заподозрил ненадежную работу авторулевого. По информации, СПКМ отключил авторулевой, перешел на ручное управление рулем и вручную вернул судно на заданный курс. Расследование Береговой Охраны должно ответить на ключевой вопрос: когда же именно произошло внезапное изменение курса судна — пока судно управлялось авторулевым либо в процессе некорректного перехода на ручное управление рулем?

Предлагается к прочтению:

§ 31. Рулевое устройство

Рулевое устройство служит для изменения направления движения судна, обеспечивая перекладку пера руля на некоторый угол в заданный промежуток времени.

Основные элементы рулевого устройства показаны на рис. 54.

Руль - основной орган, обеспечивающий работу устройства. Он действует только на ходу судна и в большинстве случаев располагается в кормовой части. Обычно на судне один руль. Но иногда для упрощения конструкции руля (но не рулевого устройства, которое при этом усложняется) ставят несколько рулей, сумма площадей которых должна быть равной расчетной площади пера руля.

Основной элемент руля - перо. По форме поперечного сечения перо руля может быть: а) пластинчатым или плоским, б) обтекаемым или профилированным.

Преимущество профилированного пера руля в том, что сила давления на него превосходит (на 30% и более) давление на пластинчатый руль, что улучшает поворотливость судна. Отстояние центра давления такого руля от входящей (передней) кромки руля меньше, и момент, необходимый для поворота профилированного руля, также меньше, чем у пластинчатого руля. Следовательно, потребуется и менее мощная рулевая машина. Кроме того, профилированный (обтекаемый) руль улучшает работу винта и создает меньшее сопротивление движению судна.

Форма проекции пера руля на ДП зависит от формы кормового образования корпуса, а площадь - от длины и осадки судна (L и Т). У морских судов площадь пера руля выбирается в пределах 1,7-2,5% от погруженной части площади диаметральной плоскости судна. Ось баллера является осью вращения пера руля.

Баллер руля в кормовой подзор корпуса входит через гельм- портовую трубу. На верхней части баллера (голове) крепится на шпонке рычаг, называемый румпелем , служащий для передачи вращательного момента от привода через баллер на перо руля.

Рис. 54. Рулевое устройство. 1 - перо руля; 2 -баллер; 3 - румпель; 4 - рулевая машина с рулевым приводом; 5 -гельмпортовая труба; 6 - фланцевое соединение; 7 - ручной привод.


Судовые рули принято классифицировать по следующим признакам (рис. 55).

По способу крепления пера руля с корпусом судна различают рули:

А) простые - с опорой на нижнем торце руля или со многими опорами на рудерпосте;

Б) полуподвесные - с опорой на специальном кронштейне в одной промежуточной точке по высоте пера руля;

В) подвесные - висящие на баллере.

По положению оси вращения относительно пера руля различают рули:

А) пебалапсириые - с осью, размещенной у передней (входящей) кромки пера;

Б) полубалансирные - с осью, расположенной на некотором расстоянии от передней кромки руля, и отсутствием площади в верхней части пера руля, в нос от оси вращения;


Рис. 55. Классификация судовых рулей в зависимости от способа крепления их с корпусом и расположения оси поворота: а - небалансирные; б- балансирные. 1 - простой; 2 - полуподвесной; 3 - подвесной.


в) балансирные - с осью, расположенной так же, как у полу- балансирного руля, но с площадью балансирной части пера на всю высоту руля.

Отношение площади балансирной (носовой) части ко всей площади руля называется коэффициентом компенсации, который у морских судов лежит в пределах 0,20-0,35, а у речных 0,10-0,25.

Рулевой привод представляет собой механизм, передающий на руль усилия, развиваемые в рулевых двигателях и машинах.

Рулевая машина на судах приводится в действие электрическими или электрогидравлическими двигателями. На судах длиною менее 60 м разрешается вместо машины установка ручных приводов. Мощность рулевой машины выбирается исходя из расчета перекладки руля на предельный угол до 35° с борта на борт за 30 сек.

Рулевой привод предназначается для передачи команд от штурмана из рулевой рубки к рулевой машине в румпельное отделение. Наибольшее применение находят электрическая или гидравлическая передачи. На малых судах применяются валиковые или тросовые приводы, в последнем случае этот привод называют - штуртросовым.


Рис. 56. Активный руль: а - с конической передачей на винт; б - с электромотором водяного исполнения.


Контрольные приборы следят за положением рулей и исправным действием всего устройства.

Приборы управления передают приказания рулевому при управлении рулем вручную. Рулевое устройство - одно из самых важных устройств, обеспечивающих живучесть судна.

На случай аварии рулевое устройство имеет дублирующий пост управления рулем, состоящий из штурвала и ручного привода, расположенных в румпель- ном отделении или вблизи от него.

На малых ходах судна рулевые устройства становятся недостаточно эффективными и порой делают судно совершенно неуправляемым.

Для повышения маневренности на современных судах некоторых типов (промысловых, буксирах, пассажирских и специальных судах и кораблях) устанавливают активные рули, поворотные насадки, подруливающие устройства или крыльчатые движители. Эти устройства позволяют судам самостоятельно выполнять сложные маневры в открытом море, а также проходить без вспомогательных буксиров узкости, входить на акваторию рейда и гавани и подходить к причалам, разворачиваться и отходить от них, экономя на этом время и средства.

Активный руль (рис. 56) представляет собой перо обтекаемого руля, на задней кромке которого установлена насадка с гребным винтом, приводящимся в движение от валиковой кони- ческой передачи, проходящей через пустотелый баллер и вращающийся от электродвигателя, установленного на голове баллера. Существует тип активного руля с вращением винта от электродвигателя водяного исполнения (работающего в воде) вмонтированного в перо руля.

При перекладке активного руля на борт работающий в нем винт создает упор, разворачивающий корму относительно оси поворота судна. При работе гребного винта активного руля на ходу судна скорость судна увеличивается на 2-3 узла. При остановленных главных двигателях от работы гребного винта активного руля судну сообщается малый ход до 5 узл.

Поворотная насадка , установленная вместо руля, при перекладке на борт отклоняет отбрасываемую гребным винтом струю воды, реакция которой вызывает разворот кормовой оконечности судна. Поворотные насадки преимущественно находят применение на речных судах.

Подруливающие устройства выполняются обычно в виде туннелей, проходящих через корпус, в плоскости шпангоутов, в кормовой и носовой оконечностях судна. В туннелях размещается гребной винт, крыльчатый или водометный движитель, создающие струи воды, реакции которых, направленные от противоположных бортов, разворачивают судно. При работе кормового и носового устройства на один борт судно перемещается лагом (перпендикулярно диаметральной плоскости судна), что очень удобно при подходе или отходе судна от стенки.

Крыльчатые движители, установленные в оконечностях корпуса также увеличивают маневренность судна.

Рулевое устройство подводной лодки обеспечивает более разнообразные ее маневренные качества. Устройство предназначается для обеспечения управляемости подводных лодок в горизонтальной и вертикальной плоскостях.

Управление подводной лодкой в горизонтальной плоскости обеспечивает плавание лодки по заданному курсу и осуществляется вертикальным и рулями , площадь которых несколько больше площади рулей надводных судов и определяется в пределах 2-3% от площади погруженной части диаметральной плоскости лодки.

Управление подводной лодкой в вертикальной плоскости на заданной глубине обеспечивается при помощи горизонтальных рулей.

Рулевое устройство горизонтальных рулей состоит из двух пар рулей с их приводами и передачами. Рули делаются парными, т. е. на одном горизонтальном баллере располагаются по бортам лодки два одинаковых пера руля. Горизонтальные рули бывают кормовыми и носовыми в зависимости от места расположения по длине лодки. Площадь кормовых горизонтальных рулей больше площади носовых рулей в 1,2-1,6 раза. Благодаря этому эффективность кормовых горизонтальных рулей в 2-3 раза выше эффективности носовых. Для увеличения момента, создаваемого кормовыми горизонтальными рулями, их обычно располагают за винтами.

Носовые горизонтальные рули на современных подводных лодках являются вспомогательными, их делают заваливающимися и устанавливают в носовой надстройке выше ватерлинии, чтобы не создавать дополнительного сопротивления и не мешать управлению лодкой при помощи кормовых горизонтальных рулей на больших скоростях подводного хода.

Обычно на полной и средней скорости подводного хода управление подводной лодкой производится при помощи одних кормовых горизонтальных рулей.

При малой скорости хода управление лодкой кормовыми горизонтальными рулями становится невозможным. Скорость, при которой лодка теряет управляемость, называется инверсивной скоростью . На этой скорости лодка должна управляться одновременно кормовыми и носовыми горизонтальными рулями.

Основные составные элементы рулевого устройства горизонтальных рулей и вертикальных рулей однотипны.