» » Выбор и расчёт схемы умзч. Пути улучшения звучания усилителей низкой частоты Выходные каскады усилителя шунтирование

Выбор и расчёт схемы умзч. Пути улучшения звучания усилителей низкой частоты Выходные каскады усилителя шунтирование

В многокаскадных усилителях последний (выходной или оконечный) каскад является каскадом усиления мощности, выделяемой в полезной нагрузке. При этом выходная мощность каскада УМ должна быть достаточной для приведения в действие нагрузки, подключенной всего выходную цепь. Выходной каскад УМ должен максимально усиливать мощность усиливаемого сигнала при допустимом коэффициенте нелинейных искажений и более высоком КПД.

Различают однотактные или двухтактные выходные каскады УМ, которые могут собираться на мощных усилительных лампах, или на транзисторах, или на газоразрядных тиратронах.

Однотактные каскады усиления мощности. Такие УМ, работающие в режиме класса А, дают возможность отбирать в нагрузку выходную мощность полезного сигнала от долей ватта до 3 ÷ 5 Вт при электрическом КПД до 10 ÷ 30% и минимально допустимых уровнях нелинейных искажений в заданной полосе частот.

При этом оптимальная величина сопротивления нагрузки, включенной непосредственно в выходную цепь мощного каскада, выбирается, исходя из соотношений Rа = Rн = (2÷ 4) * Ri - для триодных схем и Rн = Rа ≈ (0,1 ÷ 0,5) * Ri - для каскадов УМ на. мощном пентоде или лучевом тетроде. При этом схемы таких каскадов УМ и методы их графоаналитического расчета.подобны ранее приведенным схемам усилительных каскадов напряжения (см. рис. 5, 7 и 8). Такие простейшие каскады УМ дают возможность усилить сигнал по мощности с минимальными нелинейными искажениями в широком диапазоне частот.

Существенным недостатком таких бестрансформаторных схем УМ является прохождение через нагрузку не только полезной переменной составляющей анодного тока, но и его постоянной составляющей, значительно уменьшая КПД каскада и требуя более высокого напряжения источника питания Eа . Кроме того, для максимального использования полезной выходной мощности, которую может передать бестрансформаторный оконечный каскад во внешнюю нагрузку, необходимо соблюдать равенство оптимальной величины выходного сопротивления выходной цепи каскада УМ с величиной сопротивления внешней нагрузки Rн , включенной непосредственно в эту цепь, то есть Rвых = Rн .

Однако на практике в большинстве случаев сопротивление нагрузки Rн бывает меньше указанной выше оптимальной величины анодного сопротивления R а . Это объясняется тем, что в качестве внешней нагрузки в выходную цепь каскада УМ зачастую включается обмотка электродинамического громкоговорителя, электромагнитного реле, электродвигателя, электроконтактора, шагового искателя, самописца, звукозаписывающей и звуковоспроизводящей головки, двухпроводная абонентская или фидерная линия и т. п., которые обладают небольшим сопротивлением (единицы, десятки, сотни Ом, единицы кОм).

Поэтому если R н < R вых к-да , то внешняя нагрузка включается в выходную цепь каскада УМ при помощи выходного трансформатора, согласующего величину Rн с оптимальной величиной выходного сопротивления каскада R вых к-да . При этом сопротивление внешней нагрузки, включенной во вторичную обмотку трансформатора, перерсчитывается в приведенное сопротивление его первичной обмотки, включенной в выходную цепь каскада, по следующей формуле:

где коэффициент трансформации

Более точно величину оптимального значения эквивалентного сопротивления каскада УМ можно определить графическим методом, пользуясь наиболее приемлемой нагрузочной линией на семействе анодных характеристик (рис. 14) выбранной мощной усилительной лампы, то есть отрезками об и оа в сбответствующих единицах измерения:

Таким образом, по переменной составляющей анодного тока оптимальная величина приведенного сопротивления анодной нагрузки Rвых к-да может достигать от единиц до десятков и сотен килоом.

Пользуясь этим же графиком, по треугольнику авс можно определить полезную мощность в нагрузке

Коэффициент полезного действия у мощных трансформаторных каскадов УМ выше, чем у бестрансформаторных, так как ток покоя I а0 течет только через малое активное сопротивление первичной обмотки, минуя Rн . При этом

где Ро = I а0 * E а - полная мощность в режиме класса А, расходуемая от источника питания.

Следует иметь в виду, что у однотактных трансформаторных каскадов УМ более узкая полоса частот, больше габариты, масса, выше стоимость, что отражает их недостатки.

На рис. 15 приведены типовые схемы однотактных трансформаторных каскадов УМ на мощном триоде (а) и лучевом тетроде (б), работающие в режиме класса А с автоматическим смещением рабочей точки.

В этих схемах назначение каждого элемента каскада УМ аналогично рассмотренным ранее схемам усилительных каскадов напряжения с анодной нагрузкой (рис. 6 и 8).

Как видно из графиков на рис. 16, для получения оптимальной величины полезной выходной мощности

необходимо на вход каскада УМ подавать входное напряжение с амплитудой |±Umax | ≈ |-Uc 0 |, снимаемое с предварительного усилительного каскада или с датчика входного сигнала. При этом нагрузочная линия должна проходить почти касательно к кривой допустимой мощности P а доп , не пересекая ее.

Поскольку в режиме класса А рабочая точка находится на середине прямолинейного участка входной динамической характеристики каскада, то этим обеспечивается условие работы с минимальными нелинейными искажениями сигнала.

У триодных каскадов УМ нелинейные искажения меньше, чем у каскадов УМ на пентодах или лучевых тетродах.

Однако в большинстве случаев электрический КПД каскада УМ в режиме класса А практические превышает 10 ÷ 15% для триодных схем и 15 ÷ 30% для мощных пентодных и лучевых тетродных схем.

Нужно иметь в виду, что в каскадах УМ с трансформаторным выходом при малой величине активного сопротивления его первичной обмотки (r 1тр = десятки ÷ сотни Ом) анодное напряжение в режиме покоя лишь немного меньше напряжения источника питания E а , то есть

Для триодных схем,

Для схем на пентодах или лучевых тетродах, имеющих дополнительную цепь экранной сетки.

Поэтому линия нагрузки по постоянному току на семействе статических анодных характеристик (рис. 16) идет очень круто, под большим углом

В динамическом же режиме работы при подаче на вход трансформаторного каскада УМ синусоидального (гармонического) входного сигнала при оптимальном значении приведенной нагрузки R экв наибольшее напряжение Ea макс между выходными электродами увеличивается почти в два раза (а иногда и более) по сравнению с U a0 . Это явление объясняется тем, что при убывании выходного тока к величине E а добавляется противоЭДС индуктивности первичной обмотки трансформатора, задерживающей процесс убывания анодного тока. Поэтому в динамическом режиме работы такого каскада УМ нагрузочная линия по переменной составляющей анодного тока определяется величиной R экв и E а макс > Еа и, проходя через ту нерабочую точку, через которую проходит линия нагрузки по постоянному току, имеет значительно меньший угол наклона (рис. 16)

При расчете максимальной выходной мощности трансформаторного каскада УМ, учитывая КПД трансформатора, определяют по заданной величине необходимой полезной мощности в нагрузке Pполезн необходимую величину выходной мощности каскада, а именно:

Затем выбирают усилительную лампу, у которой допустимая мощность, рассеиваемая анодом, Pа доп 6Pвых к-да для триода и а Pа доп 4 Pвых к -да для.пентода или лучевого тетрода. При этом напряжение на аноде в режиме покоя принимают равным Uа0 = (0,7 ÷ 0,8) * Ua доп , а величину тока покоя берут равным

Полезная мощность, выделяемая в нагрузке, будет равна P полезн = η тр * P вых к-да = 0 ,5 η тр * Ima * Uma =0,5 η тр * I 2 ma Rэкв .

Отсюда можно определить коэффициент трансформации

Коэффициент усиления каскада УМ по напряжению

Для учета потерь полезной мощности в выходном трансформаторе принимают величину его КПД в пределах, указанных в табл. 1.

В.Майоров, С.Майоров - Усилительные устройства на лампах, транзисторах и микросхемах

Искажения выходного каскада усилителя (а именно здесь они весьма существенны, по сравнению с искажениями предварительных каскадов) зависят от оптимального выбора тока покоя (рабочей точки) транзисторов. При уходе от оптимального значения рабочей точки выходной каскад начинает генерировать искажения высоких порядков , которые весьма негативно воспринимаются человеческим слухом и являются одной из причин «транзисторного звучания» усилителя.

Обычно для организации смещения выходного каскада используется генератор напряжения . При относительной простоте схемы он обеспечивает простую настройку рабочей точки выходного каскада. И как-то уж так повелось, что этому узлу большого значения не придают.
Однако...

Однако, для качественного усиления звука второстепенных вещей, увы, нет.

Схема формирования смещения выходного каскада выполняет две функции:

1. обеспечивает задание оптимального тока покоя выходного каскада усилителя (режим АВ). Обычно, чтобы снизить искажения типа «ступенька» выходной каскад переводят в режим «АВ», несмотря на некоторую потерю КПД усилителя. В этом случае схема смещения задает ток покоя выходных транзисторов порядка 70-100мА.

2. обеспечивает термокомпенсацию тока покоя при изменении температуры выходных транзисторов. В режиме «молчания» ток через транзисторы выходного каскада невелик — соответствует току покоя, и нагрев транзисторов несильный. При большой выходной мощности ток через транзисторы возрастает, и температура их значительно увеличивается.

При этом для большинства транзисторов характерен положительный тепловой коэффициент , т.е. при нагревании транзистора ток через него возрастает. В результате возможен лавинный саморазогрев транзистора: растёт ток — растёт температура, а если растёт температура, то растёт и ток.

Схема задания смещения должна снизить ток выходных транзисторов при их нагревании.

Рассмотрим какими свойствами должна обладать схема смещения выходного каскада.

1. Обеспечивать стабильность рабочей точки при внешних возмущениях: нестабильность напряжения питания, изменения температуры окружающей среды и т.п.

2. Обеспечивать необходимую точность термокомпенсации . Для разных каскадов: эмиттерные повторители, каскады Шеклаи и т.д. требования к точности поддержания напряжения смещения разные.

3. Обеспечивать высокую скорость термокомпенсации . При нагревании транзисторов схема должна быстро снизить ток через них, а при остывании также оперативно вернуть его к прежнему значению.

Уже более 30 лет в качестве элемента термокомпенсации применяют генератор напряжения с тепловой обратной связью. Схема его достаточно проста:

Для обеспечения тепловой обратной связи сам транзистор Т1 крепят обычно на радиаторе выходных транзисторов.

Замечу, что иногда встречаются схемы, где регулировка напряжения смещения осуществляется резистором R1 (именно его предлагают сделать подстроечным). Такой вариант не то чтобы неправильный, но довольно опасный . Механический контакт подстроечного резистора весьма ненадёжен. Он может нарушиться и из-за механических причин или из-за окисления.

В случае обрыва цепи движка подстроечного резистора в представленном варианте выходные транзисторы усилителя просто закроются, усилитель перейдёт в режим «В» и катастрофических последствий (кроме роста искажений) это не принесет.

Если подстроечным сделать резистор R1, то в случае обрыва его движка, ток выходных транзисторов возрастёт настолько, насколько сможет. Хорошо, если схема защиты (если в вашем усилителе такая имеется) сможет вовремя ограничить этот ток. Иначе придется менять выходные транзисторы и всё, что успеет сгореть за одно с ними.

Для обеспечения стабильности рабочей точки при различных внешних возмущениях схему смещения запитывают от генератора тока:

Здесь транзистор Т6 — это усилитель напряжения (предвыходной каскад), а на транзисторе Т7 собран источник стабильного тока.

Схема достаточно проста, но она не учитывает «медленные» возмущения из-за изменения температуры: в помещении (летом и зимой температура может существенно отличаться), внутри корпуса усилителя. После длительной работы из-за нагрева выходных транзисторов внутри аппарата температура существенно возрастает, а это приводит к изменению тока не только выходных транзисторов но и первых каскадов выходной двойки/тройки.

Компенсировать такой температурный дрейф можно следующими способами:

1. метод Дугласа Селфа с помощью диода:

2. Метод И. Пугачева. В усилителях относительно большой мощности на выходе применяют каскады-тройки. При этом часто выходные транзисторы устанавливают на радиаторы, предвыходные — с небольшими теплоотводами на печатной плате, первые транзисторы тройки обычно ставят просто на печатной плате без теплоотвода. Рассеиваемая мощность первых транзисторов обычно невелика и здесь требуется скомпенсировать только изменение напряжения Uбэ при изменениях окружающей температуры.

Для этого можно использовать база-эмиттерные переходы аналогичных транзисторов:

Для температурной компенсации транзисторы объединяются попарно (можно склеить задними стенками) Т1 с Т4 и Т3 с Т5. Транзистор Т2 крепится к выходным транзисторам (об этом ниже).

Проблемы точности поддержания рабочей точки и скорости реагирования лучше решать вкупе.

Идеальным вариантом были бы датчики, расположенные непосредственно на кристаллах выходных транзисторов. Тогда и точность измерения температуры, и скорость реагирования (отсутствуют тепловые сопротивления радиаторов и т.п.) были бы предельно возможными.

И на сегодняшний день такое решение есть. Это транзисторно-диодные сборки от компании ThermalTrak:

Здесь в одном корпусе размещены мощный транзистор и диод, который используется как датчик температуры в схеме задания смещения выходного каскада.

Пример схемы усилителя мощности, где использованы такие сборки:

Увеличение по клику.

Сожалению, на просторах «великой Державы» эти сборки найти довольно проблематично, да и по цене они немного «кусаются». Поэтому простому радиолюбителю приходится применять в своих усилителях дедовские методы — использовать в качестве датчика температуры дискретный транзистор. Но и тут нужно подходить с умом!

Почему-то исторически сложилось, что датчик температуры чаще всего крепят на радиаторе между выходными транзисторами:

При этом помимо тепловых сопротивлений «транзистор-радиатор» добавляется весьма приличное тепловое сопротивление участка радиатора между транзистором и термодатчиком. Говорить в этом случае о точности и высокой скорости термокомпенсации как-то не логично.

Как показывает практика и опыты Дугласа Селфа, сильнее всего нагревается и быстрее остывает верхняя поверхность транзисторов (сторона, на которой обычно нанесена маркировка). Поэтому крепить датчик будет логично непосредственно на один из выходных транзисторов:

Если транзисторы имеют изолированные корпуса, то шайба между ними необязательна.

У многих наверняка возник вопрос: к транзистору какого плеча лучше крепить датчик? Однозначно ответить на этот вопрос сложно. Всё зависит от того инвертирующий у вас усилитель или неинвертирующий.

Лучше всего оптимальное крепление датчика определить экспериментальным путём:

1. крепим датчик по «типовому» между транзисторами.

2. включаем какую-нибудь запись хора (хор Турецкого в данном случае не рулит)

3. при воспроизведении хоровых записей транзисторы одного из плеч однозначно нагреются гораздо сильнее транзисторов другого плеча. Если пальцы жечь жалко, то в комплекте даже у самого дешёвого китайского мультиметра есть датчик температуры. Можно воспользоваться им.

4. закрепляем транзистор-термодатчик на наиболее нагревшемся транзисторе.

А в Вашем усилителе схема смещения выходных транзисторов сделана правильно???

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

Выбираем структурную схему усилителя мощности. Она представлена на рисунке 2. Входной каскад выполнен на транзисторе VT1 , включенный с общим эмиттером. Резистор R4 является нагрузкой первого каскада усиления. С него усиленный сигнал поступает на базу транзистора VT2 , являющимся промежуточным каскадом усиления. Выходной каскад собран на биполярных транзисторах VT7 VT10 по схеме Дарлингтона. Таким образом, усилитель мощности является трёхкаскадным. Составим примерную схему будущего усилителя мощности:

Рисунок 2 - Ориентировочная схема УМЗЧ

Максимальное напряжение на выходе и максимальный выходной ток рассчитываются по выходной мощности PL = 5 Вт. и сопротивлению нагрузки RL = 4 Ом.

Выходной каскад

Традиционно работу и расчёт усилителя мощности начинают рассматривать с выходного каскада, так как от схемы выходного каскада существенно зависят многие параметры УМЗЧ такие как: энергетические показатели, нелинейные искажения, надёжность и т.д. Выходной каскад представляет собой эмиттерный повторитель на комплементарных транзисторах, включённых по схеме Дарлингтона. В этом каскаде нагрузка подключается к коллекторам выходных транзисторов. Выходной каскад УМЗЧ представлен на рисунке 3.


Рисунок 3 - Выходной каскад УМЗЧ

Необходимое напряжение питание усилителя мощности найдём, исходя из формулы мощности:

Из получившейся пропорции находим:

При найдём ;

Выберем напряжение питания немного больше, учитывая погрешности при расчете и потери мощности питания на входном и промежуточном каскадах. Примем

Выходной каскад служит усилителем тока и в общем виде может рассматриваться как преобразователь импедансов, согласующий низкоомный выход каскада с нагрузочным сопротивлением.

Мощность выходных каскадов лежит обычно в пределах от 50мВт. до 100Вт. И более, поэтому при расчете усилителей всегда следует учитывать рассеиваемую транзисторами мощность.

Напряжение пробоя выходных транзисторов VT 8 и VT 10 должно быть:

Максимальная мощность рассеяния транзисторов VT 8 и VT 10 при активной нагрузке и гармоническом сигнале на входе равно:

Ток короткого замыкания выходных транзисторов равен:

Таким образом, при известных значениях параметров по справочным данным выбираем комплементарную пару выходных транзисторов: VT 8 - КТ 816В, VT 10 - КТ 817В.

По максимальному выходному току Imax и минимальному усилению по току B0 = 25, выбранного типа транзисторов VT 8 и VT 10, рассчитываем ток коллектора транзисторов VT 7 и VT 9:

Такому коллекторному току соответствует маломощный кремниевый транзистор КТ 3102Б - структуры n-p-n и маломощный кремниевый транзистор КТ 3107Б - структуры p-n-p .

В качестве транзистора VT 2 (транзистора промежуточного каскада) можно использовать практически любой маломощный низкочастотный транзистор. Следует только обратить внимание на предельное напряжение коллектор-эмиттер, которое не должно быть меньше, чем. Такому напряжению соответствует транзистор типа КТ 3107Б у которого максимальное напряжение коллектор-эмиттер равняется 45В.

Перейдём к рассмотрению и расчёту защиты от токовой перегрузки и короткого замыкания выхода. Из-за малого выходного сопротивления усилитель мощности легко может быть перегружен по току нагрузки и выведен из строя за счёт перегрева выходных транзисторов. Конструктивные меры повышения надёжности, такие как выбор транзисторов с большим запасом по мощности рассеяния, увеличение площади теплоотводящей поверхности, приводят к удорожанию конструкции и ухудшению её массогабаритных показателей. Поэтому целесообразно использовать схемотехнические способы повышения надёжности, вводя в усилитель мощности цепи защиты от токовых перегрузок и коротких замыканий выхода.

Рассмотрим принцип действия защиты выходного каскада УМЗЧ от токовой перегрузки и короткого замыкания выхода. Схема защиты состоит из транзисторов VT 5 и VT 6 и резисторов R 10…R 13. Схема защиты представлена на рисунке 4. Работает цепь защиты следующим образом.

При достаточно малом токе нагрузки транзистор VT 5 заперт, так как падение напряжения на резисторе R 11 недостаточно для его открывания, и цепь защиты практически не оказывает влияния на работу усилителя мощности. При увеличении тока нагрузки растёт падение напряжения на резисторе R 11 (для положительной полуволны; для отрицательной полуволны выходного напряжения будет увеличиваться падение напряжения на резисторе R 12). При достижении напряжения падающего на резисторе R 11, порога UБЭ ПОР открывания транзистора VT 5 он отпирается, забирая на себя часть тока источника, тем самым стабилизируя максимальный ток нагрузки. Номиналы резисторов R11 и R12 рассчитаем по формуле:

Резисторы R 11 и R 13 имеют малое сопротивление (100…150 Ом) и служат для ограничения тока базы транзисторов VT 11 VT 13. Резисторы R 11 и R 13 практически не влияют на работу цепи защиты.

Рисунок 4 - Схема защиты выходного каскада УМЗЧ от токовой перегрузки и короткого замыкания выхода.

Далее перейдем к рассмотрению схемы температурной стабильности тока покоя выходного каскада УМЗЧ. Существует достаточно много различных схемотехнических приёмов обеспечения температурной стабильности тока покоя выходных транзисторов. Все они в конечном счете требуют создания теплового контакта элементов стабилизирующей цепи либо с корпусом транзисторов, либо с теплоотводящей поверхностью. Еще один пример построения выходного каскада усилителя мощности с температурной стабилизацией тока покоя выходных транзисторов приведен на рисунке 4. Преимущество данного способа заключается в том, что на теплоотводящую поверхность помещается только один термочувствительный элемент - транзистор VT 4. Условие, из которого выбирают номиналы резисторов R 6 и R 8:

В общем случае отношение должно быть численно на единицу меньше количества p-n переходов в контуре. Резистор R 8 выполняется переменным для обеспечения установки требуемого тока покоя транзисторов выходного каскада усилителя мощности. Выберем номиналы сопротивлений R 6 и R 8, учитывая, что их отношение должно быть примерно равняться трём, так в выходном каскаде стоят четыре транзистора (т.е. имеется четыре p-n перехода). Возьмём сопротивление R 6 равным 1000 Ом, тогда R 8 будет равным:

Для расчёта резистора R7, воспользуемся выражением:

рассчитаем R 7.

Транзисторы выходного каскада усилителей мощности звуковой частоты (УМЗЧ) (в большинстве случаев это составной эмиттерный повторитель, как на рис.1) при работе нагреваются, изменяется напряжение эмиттер-база транзисторов и ток рабочей точки каскада. Возвращение к оптимальной рабочей точке, в которой генерируются минимальные искажения, производится схемой обратной связи с помощью изменения напряжения смещения U смещ в зависимости от состояния термодатчиков, установленных на радиаторе. Напряжение смещения должно точно отслеживать температуру p-n перехода двух или нескольких выходных транзисторов. Часто это происходит недостаточно точно, да еще с большим запаздыванием, так как постоянная времени цепи: p-n переход - корпус транзистора - радиатор - термодатчик может достигать нескольких десятков секунд! Таким образом, при усилении реального сигнала, большую часть времени выходной каскад "ищет" оптимальную рабочую точку, а значит работает с недосмещением или пересмещением и с увеличенными переходными искажениями! В любительских конструкциях неправильная установка термодатчика является частой ошибкой и может даже привести к перегреву мощных транзисторов и их тепловому пробою.

В известной книге Дугласа Селфа "Проектирование УМЗЧ" проблеме оптимальной термокомпенсации и выбора места установки термодатчиков посвящено целых 60 страниц, после прочтения которых становится ясно, что проблему можно только уменьшить, но не решить.

Отказаться от термодатчиков можно в случае жесткой стабилизации тока в рабочей точке с помощью введения в выходной каскад глубокой отрицательной обратной связи (ООС) по току. Такая обратная связь, кроме стабилизации тока покоя, также позволяет реализовать режим супер-А (Non Switching) с невыключаемыми выходными транзисторами (и с минимальными переключательными искажениями).ООС также улучшает линейность выходного каскада и уменьшает зависимость этой линейности не только от параметров мощных выходных транзисторов, (далеких от идеальных), но даже от типа применяемого транзистора (полевой или биполярный).

Рассмотрим прохождение сигнала в стандартном УМЗЧ (смотри рис.1). После усилителя напряжения сигнал поступает в выходной эмиттерный повторитель, выполненный на комплементарных транзисторах и фактически разделяется на положительную и отрицательную полуволну и каждая из полуволн усиливается по току отдельно (и, к сожалению, нестабильно) выходными транзисторами. Теперь становится понятно, что для исправления ситуации нужно решить следующую задачу: "термостабильно" расщепить сигнал на две полуволны, затем "термостабильно" усилить их в соответствующих каналах, (добавив ток покоя), и далее суммировать на выходе!

Итак, схема решения задачи показана на рис.2. Входной сигнал разделяется на положительную и отрицательную полуволну с помощью расщепителя на диодах VD1 и VD2, затем к каждой полуволне добавляется желаемый ток смещения (покоя) I смещ. Далее сумма токов Iсигн и Iсмещ усиливается однополярными и термостабильными усилителями мощности с глубокой ООС по току (усилители X и Y). Выходные токи усилителей подаются на нагрузку, причем токи сигнала суммируются, а токи смещения (покоя) вычитаются, и выходной сигнал получается идентичным входному.

Интересно, что идея раздельного усиления полуволн сигнала была замечена мной, молодым инженером, более сорока лет назад (!) в супер-статье Питера Бломлея в журнале Wireless World, февраль-март,1971г."Новый подход к схемотехнике усилителей класса В". (Кстати - Рис.1 - это точная копия рисунка из этой статьи!) Затем, в течении многих лет, в статьях и книгах (даже в книге Дугласа Селфа) были упоминания об этой идее типа "идея есть, но пока коммерческого применения не нашла". Также интересно, что через 19 лет в журнале Радио №12 за 1990 год стр.62-64 появилась статья г-на Г.Брагина, где он интуитивно вплотную подошел к решению проблемы создания УМЗЧ без термодатчиков, однако проблема стабильности вводимого тока покоя осталась нерешенной и его схему забыли... Через 31 год - в 2002г появился (почему-то) даже патент тов. Жбанова В.И. на эту тему SU2189108 " Высоколинейный двухтактный усилитель и устройство разделения сигнала на две полуволны", но до конца смысл идеи товарищ не понял и реальных схем не предложил...

Итак рассмотрим возможный вариант построения термостабильного усилителя полуволны с глубокой ООС по току (например Усил Х) на рис.3. Это фактически известная из учебника схема ИТУН (усилителя тока, управляемого напряжением). Напряжения в точке А и Б (относительно точки С) равны между собой и тем точнее, чем больше коэффициент усиления усилителя ОУ1, поэтому, по теории усилителей с обратной связью, все нестабильности внутри точек, охваченных этой связью, (а это коэффициент передачи и сдвиги напряжения на p-n переходах транзисторов с их температурной нестабильностью), мало влияют на точность соответствия выходного тока входному напряжению! Таким образом, если подать на вход такого усилителя напряжение положительной полуволны со смещением, на выходе получим независимые от температуры и параметров усилительного элемента выходной ток и ток смещения (покоя) - что и есть термостабилизация рабочей точки.

Рассмотрим возможные варианты создания УМЗЧ с использованием этого базового усилителя ИТУН - рис. 4,5,6.

Как видно выходы усилителей положительной и отрицательной полуволн могут быть соединены параллельно - как показано на рис.4, встречно - как на рис.5 или последовательно (для одинаковых транзисторов) - как на рис.6. Выходные токи суммируются на нагрузке и воспроизводят входной сигнал. Из рисунков становится понятно, каким образом нужно подавать входные напряжения Vсигн+ и Vсигн для усилителей полуволн на их входы. Их нужно подавать от генераторов тока Iсмещ и Iсигн и "привязывать" с помощью резисторов R1 и R3 в схеме рис.4: - к нагрузке Rн, в схеме рис.5 - к источникам питания, а в схеме рис.6 - и туда и сюда. Для рис.6 необходимая инверсия осуществляется с помощью токового зеркала на T1 и T2. Заметим, что в схемах рис.4 и 6 возникает дополнительная ООС при протекании входного тока через сопротивление нагрузки Rн.

Перейдем к формирователям полуволн входных напряжений - расщепителям. В схеме, показанной на рис.4 применимы простейшие варианты расщепителя - на диодах или на эмиттерных повторителях - они показаны на рис.7 и 8.

При использовании входного усилителя напряжения с токовым выходом по схеме рис.7 для "правильной" работы диодов необходимо запирающее напряжение не менее 250 мВ. Если этого на сделать, токи через диоды VD1-VD3 и VD2-VD4 будут равны половине постоянного тока выходных транзисторов усилителя напряжения VT1 и VT2, а нам этого не нужно. Запирающее напряжение получаем с помощью делителей стабильного напряжения Vсмещ - R4-R5 (R7-R6). Чтобы это смещение "не мешало" работе ОУ1 (ОУ2) необходимо вычесть точно такое же напряжение с помощью делителя R8-R10 (R9-R11) на его отрицательном входе. Далее отмечаем, что при подаче сигнала на такой расщепитель на отрицательной волне диод VD2 закрывается и для поддержания минимального тока нерабочего канала Iмин (смотри эпюры токов на рис.9) на положительный вход ОУ1 через резистор R2 подаем необходимое смещение. В другом канале минимальный ток обеспечивает резистор R3. Чтобы получить стабильное и регулируемое смещение, необходимое для выбора рабочей точки расщепителя, пропустим стабильный выходной ток усилителя напряжения через подстроечный резистор R1. Это смещение в сумме с минимальными токами Iмин задает регулируемый ток покоя Iпок для выходных транзисторов (одновременно для обоих плеч). Чтобы не отбирать с большой точностью резисторы делителя R8-R10 (R9-R11) и учесть ненулевое напряжение сдвига на входе усилителей ОУ1 и ОУ2 рекомендуется делать резисторы R1,R2 и R3 подстроечными и с их помощью выставлять токи Iмин и Iпок.

Расщепитель на транзисторах, показанный на рис.8, работает аналогично, только его входное сопротивление, как эмиттерного повторителя, значительно выше, поэтому он не нагружает выходные каскады усилителя напряжения и обеспечивает их большее усиление.

Следует сказать, что в простейшем, как на рис.8, эмиттерном повторителе при большой амплитуде сигнала правые транзисторы VT5 и VT6 разогреваются значительно сильнее левых VT3 и VT4, так как работают при большом напряжении питания на коллекторе. Поэтому термостабильной передачи напряжения смещения с резистора R1 на резисторы R4 и R5 не будет и здесь лучше применять повторитель на основе токового зеркала Вильсона, в котором этого эффекта нет.

Рассмотрим реальную схему усилителя (по структуре рис.7) - рис.10.

Усилитель напряжения построен по классической схеме: дифкаскад (VT1,VT2), каскад с ОБ(VT6), нагруженный на токовое зеркало (VT4,VT5),затем каскады ОК(VT9) и ОБ(VT8). Он обеспечивает высокое усиление и стабильный ток выходного каскада 4 мА. Далее через расщепитель на диодах VD4-VD7 полуволны сигнала поступают на дифкаскады на VT10-VT13 (VT14-VT17) и далее на эмиттерные повторители на VT18-VT20-VT22-VT23 (VT19-VT21-VT24-VT25). Питание для дифкаскадов берется от схемы вольтдобавки на R32-C6-VD8 - плюс 9В и R33-C7-VD9 - минус 9В. Обратная связь на базы VT13(VT15) подается с эмиттерных резисторов мощных выходных транзисторов VT22-VT25, поэтому схема отслеживает равенство напряжений на них (с учетом смещения для запирания диодов) и на входных резисторах R17/ R18 и R19/R20 (согласно схеме на рис.7). Для усилителей мощностью более 80 Вт рекомендуется в каждом выходном плече использовать не менее двух мощных транзисторов, поэтому в данной схеме обратная связь отслеживает некий средний ток транзисторов VT22,VT23 (VT24,VT25) с помощью суммирующих резисторов R42 и R38 (R43 и R39).

Схема малочувствительна к пульсациям напряжения питания. Она прекрасно работает от нестабилизированных источников напряжения от +/- 20 В до +/- 60 В. Амплитуда выходного напряжения меньше напряжения питания всего на 3,5 В. Например, при питании +/- 45 В - выходная мощность 80/140 ватт при нагрузке 8/4 Ома. Скорость нарастания выходного напряжения 70 В/мкС, полоса на полном сигнале 300 кГц, выходное сопротивление около 0,005 Ом на частотах до 50 кГц, нелинейные искажения даже на 20 кГц менее 0,003 % при полной мощности! Выходные транзисторы легко выдерживают выходное напряжение полного размаха частотой 200 кГц! Схема работает в супер-А классе (эпюры токов показаны на рис.9) с минимальным током и током покоя в 30мА и 120мА соответственно (на каждый выходной транзистор). Эти токи с точностью лучше 10% поддерживаются для любой температуры выходных транзисторов. Настройка токов должна производиться без сигнала и без нагрузки в такой последовательности: сначала закорачиваем резистор R14, определяющий ток покоя, и резисторами R22 и R23 устанавливаем напряжение 10 мВ на эмиттерных резисторах R42 и R43 (0,33 Ома) в обоих плечах - это токи минимума 30 мА. Затем резистором R14 устанавливаем напряжение 40 мВ на тех же резисторах. Оно соответствует току покоя 120 мА. Затем, при нагрузке и сигнале, на этих же резисторах проверяем правильную форму токов, соответствующую эпюрам на рис.9. При коротком замыкании нагрузки выходной ток ограничен с помощью светодиодов HL3 и HL4 с напряжением 1,7 В на уровне 8 ампер.

Кстати, у этой схемы замечен интересный "бонус" - цепь, состоящая из конденсатора 220 мкФ и резистора Rос, величиной от 390 Ом до 4,7 кОм, установленная между эмиттерами VT5 и VT9 (соединение показано на схеме штриховой линией) превращает выходное сопротивление усилителя в отрицательное!!! При Rос= 390 Ом выходное сопротивление равно минус 0,35 Ома, при 620 Ом - минус 0,22 Ом, при 1,1 кОм - минус 0,11 Ом, причем это сопротивление постоянно во всей звуковой полосе при сохранении остальных параметров усилителя! Хорошая возможность любителям акустики поэкспериментировать с дорогими акустическими проводами или с компенсаторами сопротивления "плохих" проводов.

Еще интересно, что схема отличается от стандартной "классической" схемы с термокомпенсацией только небольшой средней частью - от диодов VD4-VD7 до транзисторов VT18-VT19, а значит возможна совсем несложная доработка многих готовых усилителей с выбрасыванием термодатчиков и повышением надежности и качества звучания. На рис.11 показан другой вариант схемы усилителя доработки, более простой и экономичный, но обеспечивающий те же параметры усилителя, что и предыдущая версия.

Схема рис.10 работает и с полевыми выходными транзисторами, только для перезарядки большой емкости затвора мощных транзисторов типа IRFP240 - IRFP9240 требуется более мощный эмиттерный повторитель, чем VT18,VT19. Доработанная схема представлена на рис.12 и названа универсальной, так как с полевыми транзисторами имеет точно такие же параметры, как с биполярными, только скорость нарастания выходного напряжения немного меньше (50 В/мкС), чего, однако, вполне достаточно для УМЗЧ "с высокой верностью воспроизведения".

Схема полностью симметричного и способного работать как операционный усилитель с питающими напряжениями +/- (6 - 60) В и выходными токами в 10 ампер, показана на рис.13.

Использование в этой схеме расщепителя на эмиттерных повторителях с большим входным сопротивлением, как показано на рис.8, позволило применить на входе простейшие дифференциальные усилители на комплементарных транзисторах с большим усилением (h21 более 500) (VT1-VT5 иVT2-VT6) и схемы с общей базой на VT7 и VT8. Входные токи при таком включении дифкаскадов определяются разницей базовых токов комплементарных транзисторов и при близких значениях h21 составляют сотни наноампер, что позволяет обойтись без емкостей в цепи ООС или без входной емкости, и использовать схему, как мощный УПТ!

Здесь после расщепителя на транзисторах VT9...VT14 обе полуволны сигнала подаются на термостабильные усилители на VT15 - VT22. Для таких усилителей важно соблюдать равенство токов через транзисторы VT16,VT20 и VT17,VT21, так как они сравнивают входные напряжения усилителя (на резисторах R19 и R20) и выходные - на эмиттерных резисторах мощных выходных транзисторов. Идеальный вариант, конечно, здесь применить пары согласованных транзисторов с близкими h21 и Vбэ, типа КР159НТ1 и КТС3103, однако длительное применение транзисторов BC546C/BC556C в таких схемах показало их полную пригодность (желательно брать транзисторы из одной партии и располагать их рядом на плате или склеивать). Практика показала, что такая схема поддерживает напряжение минимума, например 10мВ (Iмин = 30мА) и напряжение покоя 40мВ (Iпокоя=120мА) с точностью 10% при любых температурах мощных транзисторов! Генераторы стабильного тока на VT15,VT19 и VT18,VT22 с помощью регулировки резисторами R23 и R29 позволяют задать ток минимума для мощных транзисторов. Рекомендуемые токи режима "Супер А" - 30/120 мА. Описанный выше выходной каскад имеет скорость нарастания сигнала 120 В/мкС.

Весь усилитель способен работать в полосе частот от 8 Гц до 450 кГц при полной мощности. Скорость нарастания выходного напряжения 80 В/мкС. Меандр идеальной формы размахом 60 В до частоты 200 кГц! Выходное сопротивление менее 10 мОм во всем звуковом диапазоне! Нелинейные искажения менее 0,01 % даже на 20 кГц и полной мощности! При ограничении сигнала нет выброса! Амплитуда выходного напряжения меньше напряжения питания на 3,5/4 В для нагрузки 8/4 Ома, поэтому при напряжении питания, например, +/- 45/40 В (без нагрузки и с ней) выходная мощность, как и схемы рис.10, также 80/140 ватт для 8/4 Ом нагрузки.

Любителей применения операционных усилителей может заинтересовать схема на рис.14, которая тоже построена по структуре рис.7.

Ток покоя и минимальные токи выходных транзисторов устанавливаются с помощью подстроечных резисторов R13 и R18,R21 соответственно. Схема одинакова для полевых и биполярных транзисторов! (подключение биполярных транзисторов показано на рис.15). Все параметры ограничены свойствами применяемых операционных усилителей. Для OPA2134: напряжения питания +/- (20-50) В, полоса 8Гц-200 кГц, скорость нарастания - 40 В/мкС с входным фильтром 1кОм/300пФ. Амплитуда выходного напряжения меньше напряжения питания на 2,5/3,5 В - для нагрузки 8/4 Ома и для любых транзисторов! Ноль на выходе поддерживается идеально. Выходное сопротивление менее 5 мОм! Схему также можно использовать как операционный усилитель (и как инвертирующий усилитель тоже). К сожалению, нелинейные искажения резко растут с ростом частоты до 0,05% на 20 кГц и при ограничении сигнала появляются выбросы, поэтому рекомендовать ее для высококачественных усилителей я бы не стал. Эксперименты с более совершенными микросхемами, которые захотят провести радиолюбители, возможно приведут к положительным результатам.

Для реализации схем со структурой, показанной на рис.5 (также предложенной Питером Бломлеем в 1971г), необходимы расщепители с токовым управлением. Вместо схемы расщепителя со смещением на диодах, которую применил автор, рассмотрим схему расщепителя на токовых зеркалах, схема и графики работы которого показаны на рис.16-17.

В такой схеме, кроме расщепления, можно сразу задать необходимые токи минимума и покоя! Включим встречно два токовых зеркала Вильсона на комплементарных и согласованных парах транзисторов, заземлим эмиттеры левых транзисторов VT1 иVT2, а на правые эмиттеры VT4 и VT5 подадим входной ток Iсигн. Выходные токи Iвых1 и Iвых2 текут в коллекторах VT3 и VT6. Они являются суммой токов: 1/2 Iсигн +Iпок1+Iмин1 и 1/2 Iсигн +Iпок2+Iмин2. Эпюры токов показаны на рис.17. Расщепитель с токовым управлением, показанный на рис.16-1, имеет прекрасные частотные характеристики, высокую линейность в большом диапазоне входных токов, достаточную симметрию и высокое выходное сопротивление, необходимое в схемах рис.4-6! Для расщепителя с управлением напряжением (рис.16-2) характерно большее входное сопротивление, худшая частотная характеристика и линейность, однако при введении ООС с выхода усилителя на эмиттерный резистор Rэ все характеристики становятся приемлемыми. Возможные схемы построения ИТУН (для усилителя положительной полуволны) показаны на рис.18 - 21.

Реальная схема с токовым расщепителем по рис.19 представлена на рис.22

Выходное напряжение всего на 1-1,5 В меньше напряжения питания! Скорость нарастания выходного напряжения 100 В/мкС при полосе 600 кГц (без входного фильтра R1-C2). Выходное сопротивление менее 5 мОм. Задержка сигнала 300 нС. Усилитель выдерживает полное выходное напряжение для синуса и меандра частотой 150 кГц!, а также не горит при КЗ нагрузки и при подаче только одного напряжения питания! Токи покоя и минимума 30/120 мА заложены в самом расщепителе (резисторы R18,R19,R22,R23), но для их реализации нужно выставить нулевые (начальные) токи выходных усилителей ИТУН с помощью резисторов R25 и R34. При таких токах Кг менее 0,01 % даже на частоте 20 кГц и мощности 80 вт /8 Ом.

Простая и надежная схема с токовым расщепителем и операционным усилителем по рис.21 показана на рис. 23

Здесь режим супер-А с токами 30/100 мА и ноль на выходе устанавливаются автоматически! Полоса 8 Гц- 520 кГц, скорость нарастания выходного напряжения не менее 40 В/мкС. Для ОУ LM4562 искажения такие же, как в предыдущей схеме, но амплитуда выходного напряжения меньше напряжения питания на 4 В (для 8 Ом нагрузки).

На рис.24 показано применение токового расщепителя и в несимметричных схемах (согласно рис.6-2).

Здесь режим супер-А настраивается на 30/130 мА резисторами R29 и R34. Параметры идентичны схеме на рис.22.

На рис.25 показан удачный вариант включения расщепителя в местную обратную связь выходного каскада, что позволило создать почти идеальный выходной каскад (при отсутствии настроек для режима супер-А) с большим входным сопротивлением и прекрасными частотной и амплитудной характеристиками. Для всего усилителя: рабочее напряжение питания от 20 до 50 В, амплитуда выходного напряжения меньше напряжения питания на 2,5 - 3 В, скорость нарастания выходного напряжения 80 В/мкС при полосе 400 кГц, режим супер-А с токами покоя и минимума 110/30 мА соответственно, ограничение сигнала без выбросов, воспроизведение меандра частотой 150 кГц и амплитудой +/- 25 В, гармоники менее 0,003 % даже на 20 кГц.

Все описанные выше усилители могут быть перенастроены, при желании, на работу в режимах А,В или АВ, причем со стабилизацией выбранного режима. Замечу, что минимальные искажения в УМЗЧ конечно можно получить в режиме А, однако измерения показывают, что разница между режимами А и супер-А появляется только на частотах 18-20 кГц и всего в несколько тысячных процента, чего не может услышать никакой "абсолютный" слух! Дуглас Селф в пятом издании книги "Схемотехника усилителей мощности. Справочник. (2009г)" пишет, что еще в 1975 году исследовал режим супер-А (автор назвал его методом Питера Бломлея), но нашел некие "артефакты в точке кроссовера" и оценил его "как не имеющий коммерческой перспективы", что мне кажется несправедливым. Схемы усилителей, предложенные в данной статье, прекрасно работают и доказывают, что современные усилители нужно делать только в классе супер-А без головной боли "о месте установки термодатчиков и динамике их работы". А в "Справочник" Дугласа Селфа нужно добавлять главу "Выходные каскады с глубокой ООС и хорошей термостабильностью режимов"! (Я так думаю)

В заключении хочется сказать, что схемы УМЗЧ со стабилизацией режима достаточно надежны и могут быть выполнены из недорогих комплектующих, при этом параметры усилителей удовлетворят самого взыскательного любителя высококачественного звука. Некоторые схемы (как на рис.23) настолько просты, что могут быть рекомендованы даже начинающим радиолюбителям. Многие схемы могут быть наверняка улучшены! Новый (точнее хорошо забытый старый) класс супер-А ждет своих исследователей! Схемотехника усилителей допускает также микросхемное исполнение в виде оригинальной микросхемы УМЗЧ или мощного операционного усилителя, но это уже совсем другая история (и вряд ли Российская)...

Александр Гладкий