» » Типы корабельных рулей. Конструкция рулей, рулевое устройство, классификация судов, транспортные суда, служебно-вспомогательные суда, суда технического флота и специальные суда, суда на подводных крыльях

Типы корабельных рулей. Конструкция рулей, рулевое устройство, классификация судов, транспортные суда, служебно-вспомогательные суда, суда технического флота и специальные суда, суда на подводных крыльях

Назначение : обеспечение управляемости судна, т.е. его способности двигаться по определённой траектории.

Конструкция рулевого устройства .

Общее расположение одного из вариантов рулевого устройства представлено на рисунке.

Рис. 3.1.1. Схема рулевого устройства:

1- перо руля; 2 – фланцевое соединение; 3- опоры баллера;

4 – голова баллера; 5 – рулевой привод; 6 – рулевая машина;

7- штурвал; 8 – рулевая передача; 9 – баллер; 10 – гельмпортовая труба;

11 – петля пера руля; 12 – штырь; 13 – петля рудерпоста;

14 – рудерпост; 15 – пятка ахтерштевня.

Основным элементом, создающим необходимое для маневра усилие, является перо руля 1. Для поворота пера руля на некоторый угол относительно ДП служит баллер 9 – вал переменного по длине диаметра. Участки с увеличенным по сравнению с расчётным диаметром предусматриваются в местах расположения опор баллера 3 для повышения ремонтопригодности. Для соединения баллера и пера руля чаще всего используют либо фланцевое соединение 2, изображённое на рисунке, либо конусное соединение. Баллер руля входит в кормовой подзор корпуса судна через гельмпортовую трубу 10, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор 3 по высоте. Нижняя опора располагается над гельмпортовой трубой и имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна. Верхняя опора располагается непосредственно у головы баллера, обычно она воспринимает массу баллера и руля, поэтому на баллере делают кольцевой выступ.

Необходимое для поворота руля усилие на баллере создаётся посредством рулевого привода . В состав рулевого привода входят: рулевая машина 6; средства передачи крутящего момента от рулевой машины голове баллера 4 (рулевой привод - румпель или сектор 5); рулевая передача 8; а так же система дистанционного управления рулевым приводом – устройство для передачи команд по перекладке руля с ходового мостика (от штурвала 7) на органы управления рулевой машины.

Классификация рулей .

По распределению площади пера руля относительно оси вращения выделяют следующие типы рулей (рисунок 3.1.2):

Рис. 3.1.2. Классификация рулей по распределению площади:

1 – перо руля; 2 – противоледовый выступ; 3 – баллер;

4 – рудерпост; 5- кронштейн.

- небалансирный (обычный ) (рис. 3.1.2, а), ось вращения которого близка к передней (носовой) кромке пера руля (отстоит от неё на расстояние, равное радиусу опоры руля);

- балансирный (рис. 3.1.2, б), ось вращения которого смещена ближе к центру гидродинамического давления (отстоит от передней кромки на расстояние, большее радиуса опоры руля), при этом часть площади пера, находящаяся в нос от оси вращения, называется балансирной;


- полубалансирный (рис. 3.1.2, в), у которого распределение площади в нижней части пера руля соответствует балансирному, а в верхней – обычному рулю;

- подвесной (рис. 3.1.2, г), выделяется в классификации традиционно и является тем же балансирным рулём, отличающимся тем, что непосредственно на пере руля опоры не размещаются.

Балансирные и полубалансирные рули характеризуются коэффициентом балансирности k d:

где: F d - часть площади пера руля, находящаяся между передней кромкой и осью вращения (балансирная), м 2 ; F – полная площадь пера руля, м 2 .

Для балансирных рулей обычно k d = 0,21¸0,23, для полубалансирных k d = 0,15.

Достоинство балансирных и полубалансирных рулей: вследствие меньшего отстояния центра давления от оси вращения момент на баллере требуется меньше, чем у небалансирных.

Недостаток – крепление таких рулей к судну сложнее и менее надёжно.

По форме профиля выделяют следующие типы рулей:

- плоские однослойные, из-за своей низкой эффективности применяются редко – в основном на несамоходных судах;

- профилированные двухслойные (обтекаемые ), состоящие из наружной обшивки и внутреннего набора. Набор формируется из горизонтальных рёбёр и вертикальных диафрагм, сваренных друг с другом. Гоизонтальные рёбра крепятся к основе пера руля – рудерпису, представляющему собой массивный вертикальный стержень. Рудерпис изготавливается вместе с петлями для навешивания пера руля на рудерпост. Конкретную форму профиля руля как правило подбирают экспериментально, соответственно, именуют профили по названию лабораторий, в которых они разработаны.


Рулевые приводы, их виды, конструкция и требования к ним .

Рулевой привод предназначен для непосредственного выполнения перекладки руля и контроля его положения.

В составе рулевого привода можно выделить (достаточно условно) следующие элементы:

Устройство для передачи крутящего момента от рулевой машины к баллеру (иногда называемое собственно рулевым приводом);

Рулевая машина – силовая установка, создающая необходимое усилие для поворота баллера;

Рулевая передача, осуществляющая связь между постом управления и рулевой машиной;

Система контроля.

Выделяют следующие основные виды рулевых приводов:

Механические (ручные), к которым относятся румпельно-штуртросовые, секторно-штуртросовые, секторные с валиковой проводкой, винтовые румпельные;

Имеющие источник энергии (гидравлические, электрические, электрогидравлические).

Механические приводы применяются только на малых судах и в качестве вспомогательных рулевых приводов.

Требования к рулевым приводам содержатся в Правилах классификации и постройки морских судов РМРС (том 1, раздел III «Устройства, оборудование и снабжение», п. 2 «Рулевое устройство» и том 2, раздел IX «Механизмы», п.6.2 «Рулевые приводы»). Среди основных требований можно выделить следующие:

1. Все суда должны быть снабжены главным и вспомогательным рулевыми приводами, действующими независимо один от другого.

2. Главный привод и баллер должны обеспечивать перекладку руля с 35 0 одного борта на 30 0 другого борта не более чем за 28 с при максимальной эксплуатационной осадке и скорости переднего хода.

3. Вспомогательный привод должен обеспечивать перекладку руля с 15 0 одного борта на 15 0 другого борта не более чем за 60 с при максимальной эксплуатационной осадке и скорости хода, равной половине максимальной эксплуатационной скорости переднего хода или 7 уз (в зависимости от того что больше).

4. На нефтеналивных судах, газовозах и химовозах валовой вместимостью 10000 и более, на прочих судах вместимостью 70000 и более, а также на всех атомных судах главный рулевой привод должен включать в себя два (или более) одинаковых силовых агрегата. Соответственно, для них должны быть предусмотрены две независимых системы управления с ходового мостика.

5. Управление главным приводом должно быть предусмотрено с ходового мостика и из румпельного отделения.

6. Управление вспомогательным приводом должно быть предусмотрено из румпельного отделения, а в том случае если он действует от источника энергии – должно быть предусмотрено также независимое управление с ходового мостика.

7. Конструкция рулевых приводов должна обеспечивать переход при аварии с главного привода на вспомогательный за время не более 2 мин.

8. Должен быть обеспечен контроль положения руля.

Выделяют следующие типы рулевых приводов:

Продольно-румпельный, в котором одноплечий румпель, насаженный на головку баллера, расположен в продольном направлении (рис. 3.1.3, а);

Поперечно-румпельный, в котором румпель представляет собой двуплечий рычаг (рис. 3.1.3, б) – название при этом условно, т.к. румпель может находиться как вдоль, так и поперёк ДП судна;

Секторный, в котором насаженный на головку баллера сектор поворачивается ведущей шестернёй рулевой машины (рис. 3.1.3, в).

а) б) в)

Рис. 3.1.3 Типы рулевых приводов:

а – продольно-румпельный; б – поперечно-румпельный; в секторный.

В настоящее время на крупных судах получил распространение поперечно-румпельный привод с совмещённой с ним четырёхплунжерной гидравлической рулевой машиной.

Выделяют следующие типы рулевых передач:

Валиковая, при которой связь между постом управления и исполнительным механизмом (например, золотником гидравлической рулевой машины) осуществляется посредством системы стальных валиков (отрезков труб), соединённых между собой с помощью шарниров или конических зубчатых передач;

Гидравлическая, в которой используется объёмный гидропривод;

Электрическая, состоящая из системы самосинхронизирующихся двигателей – при вращении штурвала в роторе передающего двигателя (генератора) возбуждается ток, вызывающей вращение ротора приёмника, соединённого с исполнительным механизмом рулевой машины.

Из различных типов рулевых машин наибольшее распространение получили электрические и электрогидравлические рулевые машины.

Наиболее распространёнными на современных судах являются электрогидравлические четырёхплунжерные рулевые машины с поперечно-румпельным рулевым приводом. Конструкция такой ЭГРМ с механической обратной связью приведена на рисунке 3.1.4.


Рис. 3.1.4 Электрогидравлическая рулевая машина (ЭГРМ)

Два идентичных исполнительных механизма ИМ (приводимых в действие электродвигателями 11 от двух электрических линий управления) работают на один выходной управляющий элемент – шток 12. Перемещение штока h (являющееся заданием на перекладку руля) с помощью рычагов BD и FG, соединённых в точке С, и штанги 17 передаётся насосам регулируемой подачи 8, приводимых в действие электродвигателями 7. Насосы согласно полученным перемещениям е 1 и е 2 регулируемых органов создают подачу Q 1 и Q 2 соответственно.

При работе насосов в цилиндрах рулевой машины 6 создаётся перепад давлений р 1 – р 2 , в результате чего баллер 3 посредством плунжеров 5 и румпеля 2 поворачивается, и руль 1 перекладывается на некоторый угол a.

При этом обратная механическая связь 4 возвращает посредством рычагов DB и FG штангу 17 в исходное среднее положение, в котором суммарное перемещение регулируемых органов насосов е = 0. Давления в полостях цилиндров выравниваются, перемещение руля останавливается и поддерживается заданный угол a. Таким образом, данная ЭГРМ с механической обратной связью представляет собой автономную следящую систему, включённую последовательно замкнутому контуру электрической системы управления.

Указатели положения руля на мостике получают электрический сигнал от датчика 14, приводимого в действие рычагом 13, соединённым со штоком 12.

Для согласования нулевых положений штанги и управляемых органов насосов служит регулировочное устройство, состоящее из винтовых соединений 15 и 16 на концах штанги NL. Серьги AB и HG компенсируют взаимное перемещение рычагов.

В случае отказа дистанционной системы управления рулевая машина приводится в действие штурвалом 10, соединённым с редуктором 9.

Конструкция рулевых устройств с пассивным рулем зависит от следующих факторов:

Конструктивных особенностей кормового подзора судна;

Типа рулей;

Типа соединения руля с баллером;

Типа рулевого привода.

Рули . Судно может иметь один (в ДП), два (за винтами на двухвинтовых судах), а также три и более рулей.

Современный судовой руль (рис.208) представляет собой вертикальное крыло с внутренними подкрепляющими ребрами, вращающееся вокруг вертикальной оси, площадь которого у морских судов составляет 1/40–1/60 площади погруженной части ДП (произведения длины судна на его осадку: LT).

На форму руля значительное влияние оказывает форма кормовой оконечности судна и расположение ГВ.

По форме профиля пера рули делятся на плоские и профильные обтекаемые . Профильный руль состоит из двух выпуклых наружных оболочек, имеющих с внутренней стороны ребра и вертикальные диафрагмы, сваренных друг с другом и обра­зующих каркас для повышения жесткости, который с обеих сторон покрыт приваренными к нему стальными листами.

Профильные рули имеют перед пластинчатыми ряд преимуществ: более высокое значение нормальной силы давления на руль; меньший момент, необходимый для поворота руля. Кроме того, обтекаемый руль позволяет улучшить пропульсивные качества судна. Поэтому они нашли наибольшее применение.

Внутреннюю полость пера руля заполняют пористым материалом, предотвра­щающим попадание воды внутрь. Перо руля крепится к рудерпису с помощью штырей (рис. 209, 210). Рудерпис отли­вают (или отковывают) заодно с петлями для навешивания руля на рудерпост (отливку иногда заменяют сварной конструкцией), являющийся неотъемлемой частью ахтерштевня.

По способу соединения с корпусом и количеству опор пера пассивные рули разделяют:

На простые (многоопорные) (рис. 211, а , б, в );

Полуподвесные (одноопорные – подвешенные на бал­лере и опертые на корпус в одной точке) (рис. 211, в );

Подвесные (безопорные, подвешенные на баллере) (рис. 211, г ).

По положению оси баллера относительно пера разли­чают рули небалансирные (обычные), у которых ось баллера проходит вблизи передней кромки пера, и балансирные, ось бал­лера у которых расположена на некотором расстоянии от передней кромки руля. Полуподвесные балансирные рули называют также полубалансирными (см. рис. 211).

Небалансирные рули уста­на­в­ливают на одновинтовых судах, полубалансирные и балан­сир­ные – на всех судах. Применение подвесных (балансирных) рулей позволя­ет снизить мощность рулевой машины за счет умень­шения крутящего момента, необходимого для пе­рекладки руля.

Наиболее важными геометрическими характеристиками руля являются:

Площадь S r ;

Относительное удлинение l r = S r /b 2 r = h 2 r /S r ;

- средняя ширина руля b r ;

Высота пера руля h r ;

Форма и относительная толщина профиля.

Величина площади пера руля зависит от типа судна и его назначения. Для ориентировочной оценки необходимой площади руля обычно используют отношение S r /LT ,которое для морских транспортных судов с одним рулем составляет 1,8–2,7, для танкеров – 1,8 2,2; для буксиров 3 6; для судов прибрежного плавания 2,3 3,3.

Баллер руля (см. рис. 211, 213) – это массивный вал, при помощи которого поворачи­вается перо руля. Нижний конец баллера обычно имеет криволи­нейную форму и заканчивается лапой – фланцем, служащим для соединения баллера с пером руляболтами, что облегчает съем руля при ремонте (рис.212). Иногда вместо фланцевого (рис. 212, а ) применяют замковое (рис. 212, б ) или конусное соединение. Крепление пера руля к баллеру и корпусу на многих типах судов имеет много общего и отличается незначительно. Конструкции верхнего узла крепления приведены на рис. 209, а нижнего – на рис. 211, а, б ) Установка под штырь чечевицы из закаленной стали для уменьшения трения в точке опоры пера руля показана на рис. 210, а .

Баллер руля входит в кормовой подзор корпуса через гельмпортовую трубу, обеспечивающую непроницаемость корпуса, и имеет не менее двух опор (под­шипников) по высоте. Нижняя опора располага­ется над гельмпортовой трубой и, как правило, имеет сальниковое уплотнение, препятствующее попаданию воды в корпус судна; верх­няя опора размещается непосредственно у места закрепления сектора или румпеля. Обычно верхняя опора (опорно-упорный подшипник) воспринимает массу баллера и пера руля, для чего на баллере делают кольцевой выступ.

Рулевые приводы . На судах морского флота эксплуатируются разнообразные рулевые приводы, среди которых преимущественное распространение получили рулевые машины с электрическими и гидравлическими приводами отечественного и зарубежного производства.

Они обеспечивают передачу усилий рулевого дви­гателя к баллеру. Среди них широко известны два основных типа приводов:

- механический секторно-румпельный при­­вод от электромотора (рис.213, 214);

Силовой плунжерный привод от гидро­ци­линдров (рис.215).

Рулевые передачи, посредством которых осу­ществляется связь поста управления с испол­ни­тель­ным механизмом рулевого привода, имеют различное устройство. На современных судах применяют в основном электрические и гидрав­лические передачи.

Рулевое устройство с механическим секторно-рум­пель­ным приводомприменяется на судах малого и среднего водоизмещения. Кинематическая схема передачи усилия от рулевой машины к перу руля этого привода хорошо показана на рис.213.

В таком приводе румпель жестко скреплен с баллером руля. Сектор, свободно наса­женный на баллер, связан с румпелем при помощи пружинного амортизатора, а с рулевым двигателем - зубчатой передачей. Пе­рекладка руля осуществляется электромотором через сектор и румпель, а динамические нагрузки от ударов волн гасятся аморти­за­то­рами.

Схема управления секторно-рулевой ма­шиной с электрической передачей при­ведена на рис.214.

В составсхемы управления рулевым устройством входят:

Пост управления со следящей элек­трической системой;

Электрическая передача от поста упра­вления к электромотору;

Основной пост управления находится в рулевой рубке у путе­вого компаса и репи­тера гирокомпаса. Штурвал или пульт управ­ления рулем монтируют обычно на одной колонке с авторулевым агрегатом. Основным элементом электрической передачи являются система контроллеров, помещенных в штур­вальной колонке и связанных элек­тропроводкой электродвигателем основного привода в румпельном отделении. Крутящий момент от электродвигателя передается на зубчатый сектор, соединенный с румпелем и баллером, через червячно-редукторную передачу. Все механизмы смонтированы в виде самостоятельного агрегата. Румпель крепится на баллере на двух шпонках и связан с сектором двумя пружинными амортизаторами.

Рулевые устройства с гидравлическим приводом в упрощенном виде показаны на

рис.215; 216). В его состав входят два (или четыре) гидроцилиндра, маслонасос, телемотор и гидросистема.

Работа устройства осуществляется сле­дующим образом. При вращении шту­рвала, размещенного в рулевой рубке, те­лединамический датчик по­ста управления фор­ми­рует командный сигнал в виде давления масла, которое гидросистемой нагне­тается в цилиндр те­ле­мо­тора. Под действием это­го сигнала телемотор при­во­дит в действие ры­ча­ж­ную систему обратной связи, которая открывает доступ силового масла в один из гидроцилиндров. При этом масло под давлением насоса перепускается из одного цилиндра в другой, двигая поршень и поворачивая румпель, баллер и перо руля в нужную сторону. После этого регулировочная тяга возвращается в нулевое положение, а датчик и репитор фиксируют новое положения руля.

Чтобы давление масла в гидроцилиндрах не повышалось при ударах о перо руля сильной волны или большой льдины, гидросистема снабжена предохранительными клапанами и амортизационными пружинами.

В случае выхода из строя телемотора управление рулевой машиной можно осуществлять из румпельного отделения вручную.

При выходе из строя обоих масляных насосов переходят на ручную перекладку руля, для чего трубы гидросистемы напрямую соединяют с гидроцилиндрами, создавая в них давление вращением штурвала в посту управления.

Более подробная схема управления рулевым устройством с двухплунжерной рулевой машиной приведена на рис. 215, а ее компоновка – на рис.217.

Схема гидропривода четырех плун­жерной рулевой машины с аналогич­ным принципом действия показана на рис.216. Эти машины получили наибольшее распространение на современных судах, так как они обеспечивают наивысший коэффициент полезного действия всего рулевого устройства. В них давление рабочего масла в гидроцилиндрах непосредственно пре­образуется сначала в поступательное движение плунжера, а затем через механическую передачу - во вращательное движение баллера руля, который жестко связан с рум­пелем. Необходимое давление масла и мощность рулевой машины формируется радиально-поршневыми насосами переменной производительности, а раздачу его по цилиндрам осуществляет телемотор, который получает команду от штурвала с рулевой рубки.

Рулевое устройство предназначено для сохранения заданного курса или изменения его в нужном направлении. В состав рулевого устройства входят руль, рулевой привод, рулевая машина и системы дистанционного управления рулевой машиной с ходового мостика.

Руль. Основными органами управления большинства современных морских судов являются рули: обыкновенные, балансирные и полубалансирные. На некоторых судах улучшение ходкости и управляемости достигается установкой винтов с насадками, активных рулей, подруливающих устройств, крыльчатых движителей и др. Перекладка обычных и активных рулей, а также поворотных насадок с нужной скоростью на требуемый угол (от диаметральной плоскости - ДП) или удержание их в заданном положении производится рулевой машиной.

Рулевой привод . Рулевые приводы делятся на две группы: с гибкой связью (штуртросовые, цепные) и с жесткой связью (зубчатые, винтовые, гидравлические).

Выбор типа рулевого привода обусловливается расположением рулевой машины на судне. На большинстве судов, особенно маломерных, рулевая машина располагается в рулевой рубке или под ней на уровне верхней палубы. При таком расположении рулевой машины ее связь с баллером руля осуществляется обычно через гибкую цепную или тросовую передачу. Охватывающую тяговый барабан рулевой машины цепь направляют через ролики вдоль бортов и присоединяют концами к сектору или румпелю, закрепленному на баллере руля. На. прямолинейных участках цепь часто заменяют стальными штангами. В бортовую проводку включают талрепные стяжки для выборки слабины и амортизирующие буферные пружины, работающие на сжатие.

На рис. 4.1 схематически изображен штуртросовый привод с рычажным румпелем.

Рис. 4.1. Схема штуртросового привода с рычажным румпелем

Румпель 5 представляет собой рычаг, один конец которого жестко насажен на головку баллера руля О. Ко второму концу румпеля присоединен штуртрос 4, выполненный из цепи или стального троса. Штуртрос проходит по направляющим блокам 2 и навивается на барабан 1. При вращении барабана один конец штуртроса навивается и тянет за собой румпель, который поворачивает руль, а второй конец в это время сматывается с барабана. Для смягчения толчков от ударов волн о перо руля в системе штуртроса предусмотрены пружинные амортизаторы 3.

Недостатком описанного рулевого привода является появление неизбежной слабины в штуртросах. Это приводит к неточности перекладки руля, так как при перемене направления вращения штуртросового барабана сначала будет выбираться слабина, т. е. будет мертвый ход.

Провисание штуртроса устранено в штуртросовых приводах с секторным румпелем (рис. 4.2). Замена румпеля сектором позволяет уравнять длины сбегающего и набегающего тросов при перекладке пера руля.


Рис. 4.2. Схема секторного штуртросового привода


Рис. 4.3, Схема секторного зубчатого привода

На внешней стороне сектора 3 имеются две канавки, в которых размещены два противоположных конца штуртроса, закрепленные на ступице в точках 1 и 2. Трос к проушинам крепят через амортизирующие пружины, работающие на сжатие. Провисание штуртроса исключается, так как последний не сходит полностью с сектора при его повороте на углы перекладки руля и обеспечивает постоянство плеча, создающего момент на баллере.

Секторный зубчатый рулевой привод показан на рис. 4.3.

Он состоит из зубчатого сектора 2, свободно сидящего на голове баллера 1 руля, и румпеля 3, жестко укрепленного на баллере. Связь между сектором и румпелем осуществляется с помощью буферных пружин 4, которые предохраняют зубчатую передачу от поломки при ударе волн о перо руля. Зубчатый сектор находится в зацеплении с цилиндрической шестерней 5, вал 6 которой вращается рулевой машиной. Секторный зубчатый привод позволяет осуществлять точную перекладку руля.

Расположение рулевой машины на корме в специальном румпельном отделении обеспечивает надежную связь машины с румпелем, однако при этом требуется довольно длинная кинематическая связь рулевой машины с ходовым мостиком.

В современном судостроении более широко применяются рулевые приводы с жесткой связью. Рулевые машины расположены в непосредственной близости от рулевого привода.

На рис. 4.4 изображен винтовой привод, который может приводиться в действие электродвигателем или ручным штурвалом.


Рис. 4.4. Винтовой привод

Привод состоит из вала 12 с правой и левой резьбами, по которому при вращении движутся в разные стороны ползуны 11 и 4, скользящие вдоль неподвижных направляющих 5 и 10. Тягами 3 и 13 ползуны соединены с концами румпеля 1, насаженного на баллер руля 2. Винтовой вал приводится во вращение червяком 8, сидящим на валу двигателя и находящимся в зацеплении с червячным колесом 7 и парой цилиндрических шестерен 9 и 6. Если при вращении вала ползун 11 пойдет вправо, а ползун 4 - влево, то руль будет перекладываться на правый борт. При обратном движении вала ползуны 11 и 4 будут расходиться и руль будет перекладываться на левый борт.

Рулевой привод такой конструкции часто применяют в качестве запасного ручного привода. Его недостатками являются косвенное влияние конечной длины тяг на точность перемещения ползуна, низкий механический КПД и жесткость соединений.

Рулевая машина обеспечивает поворот руля в соответствии с сигналом с мостика и является составной частью рулевого устройства.

Рулевое устройство состоит из четырех частей:

– системы управления,

– силового агрегата,

– рулевого привода,

Силовой агрегат и рулевой привод образуют собственно рулевую машину.

Система управления или телепередача передает с мостика сигнал на поворот руля и обеспечивает работу силового агрегата и рулевого привода до тех пор, пока не будет достигнут заданный угол поворота руля. Силовой агрегат создает усилие, необходимое для поворота руля на заданный угол. Рулевой привод – это устройство, посредством которого осуществляется движение непосредственно руля.

Рулевое устройство должно удовлетворять следующим требованиям:

– иметь два независимых средства перекладки руля (при наличии двух силовых агрегатов, вспомогательный или резервный силовой агрегат не требуется);

– мощность и вращающий момент агрегата должны быть такими, чтобы перекладка руля с 35 одного борта на 30 другого осуществлялась при максимальной скорости судна за время не превышающее 28 с;

– вспомогательный рулевой привод должен обеспечивать перекладку руля с 15 одного борта на 15 другого не более чем за 60 с при скорости переднего хода, равной половине максимальной, но не менее 7 узлов;

– рулевая машина должна быть защищена от ударных нагрузок;

– должно быть предусмотрено аварийное управление рулевой машиной из румпельного отделения;

– танкеры, имеющие валовую вместимость более 10 000 р.т, должны иметь две независимые системы управления рулевой машиной с мостика.

Рулевые машины могут иметь паровой, электрический и гидравлический привод.

На современных морских судах используются рулевые машины с гидравлическим плунжерным либо лопастным приводом.

5.10.2. Электрогидравлические рулевые машины

Электрогидравлические рулевые машины состоят из следующих основных узлов:

– гидравлического рулевого привода – устройства, поворачивающего баллер руля;

– насосного агрегата (насос и двигатель), обеспечивающего питание гидравлических рулевых приводов рабочей жидкостью;

– органов распределения рабочей жидкости и системы управления насосами и распределением рабочей жидкости;

– системы трубопроводов питания, предохранительных клапанов, компенсаторов; динамических нагрузок, ограничителей мощности и других элементов в зависимости от конструкции рулевой машины.

Гидравлические рулевые приводы – это гидродвигатели, обеспечивающие ограниченные углы поворота исполнительного вала, которым является баллер руля. Наиболее широкое распространение получили плунжерные приводы. В зависимости от значения необходимого вращающего момента применяется двух– либо четырех плунжерный привод. Принципиальная схема такого привода показана на рис. 74.

Рис. 74. Принципиальная схема плунжерного привода:

1– электродвигатель насоса, 2– насос, 3– предохранительный клапан, 4– муфта, 5– румпель, 6– цилиндр, 7– цистерна

Плунжеры движутся в гидравлических цилиндрах, поворачивая румпель шарнирной крестовины, находящейся в развилке плунжеров. Привод обслуживается двумя насосами переменной подачи. Каждый из насосов сообщается трубопроводами со всеми гидравлическими цилиндрами рулевого привода для всасывания и нагнетания масла.

Рядом с цилиндрами находится масляная цистерна, которая снабжена невозвратными клапанами для автоматического пополнения утечек масла из системы. Байпасный клапан объединен с предохранительным клапаном и открывается для перепуска масла в случае сильных ударов волны в перо руля. В этом случае плунжера смещаются, что в свою очередь, вызывает изменение подачи насоса, который нагнетает масло в соответствующий цилиндр, и перо руля возвращается в прежнее положение. Для защиты от поломки рычагов управления при ударной нагрузке используется буферная пружина. При обычных условиях эксплуатации работает один из насосов. Если требуется обеспечить ускоренную перекладку руля, оба насоса могут использоваться одновременно.

На рис. 75 показано устройство 4-х плунжерной электрогидравлической рулевой машины.

Такая машина создает больший вращающий момент и имеет повышенную надежность в случае выхода из строя различных частей установки. Каждый насос может работать на все цилиндры или на два цилиндра правого или левого борта.

Наличие блока клапанов управления, объединяющего предохранительные клапаны, запорные клапаны насосов и цилиндров, байпасные клапаны, повышает живучесть рулевой машины.

При нормальных условиях один насос может обеспечить работу всех цилиндров. В аварийной ситуации могут быть использованы два насоса с ручным управлением для работы двух плунжеров правого борта, двух – левого борта, двух носовых или двух кормовых плунжеров.

Рис. 75. 4-х плунжерная электро-гидравлическая рулевая машина:

1 ,23,25 – насосы переменной подачи, 2,9,19,22 – запорные клапаны цилиндров, 3,10,18,21 – гидравлические цилиндры с плунжерами, 4,8,17,24 – воздушные и манометровые запорные клапаны, 5,7,40,47,48 – масляные трубопроводы цилиндров,6,16,20 – электродвигатели, 11,27 – байпасные клапаны, 12,37 – соединительные звенья, 13,26 – плавающие рычаги, 14 – тяга буферной пружины, 15 – румпель, 28 – маховик местного поста управления, 29,30,31,32,33,34 – невозвратные всасывающие пополнительные клапаны, 35 – приемник телемотора, 36– соединительная тяга насосов, 38,39,49,50,51,52 – запорные клапаны насосов, 41,42,43, 44,45,46,53,54 – масляные трубопроводы между клапанами, 55 – цистерна пополнения масла.

Для того, чтобы система была готова к работе, необходимо заполнить маслом каждый цилиндр рулевого привода, затем установить на место наполнительные пробки и закрыть воздушные краны. Байпасные клапаны при этом должны быть открыты, а цистерна для пополнения заполнена. Воздушные краны на насосах оставляют открытыми до тех пор, пока вытекающее масло содержит пузырьки воздуха. Используя механизм ручного управления, насосы ставят в положение минимальной подачи и проворачивают их вручную, удаляя воздух сначала из одной а затем из другой пар цилиндров. После этого включают электродвигатель насоса и приступают к проверке рулевой машины в действии. При этом еще раз удаляют воздух из цилиндров и насосов через соответствующие краны.

В электрогидравлических рулевых машинах с роторным лопастным приводом рис. 76 лопастной ротор прочно закреплен на баллере.


Рис. 76. Лопастной электро-гидравлический привод:

а – принципиальная схема, б – разрез, 1 – электродвигатель, 2 – насосы, 3 – предохранительный клапан, 4 – корпус, 5 – баллер, 6 – ротор, 7 – масляная полость, 8 – масляная цистерна, 9 – крышка

Ротор может поворачиваться в корпусе, который крепится к судовому набору. Пространство между лопастями ротора и перемычками корпуса образуют полости, объем которых изменяется при повороте ротора. Полости уплотнены специальной набивкой. С обеих сторон поворотных лопастей подведены трубопроводы, каждый из которых имеет кольцевой коллектор. При подаче масла во все полости с левой стороны поворотных лопастей и при всасывании масла из всех полостей с правой стороны обеспечивается поворот ротора по часовой стрелке. Для поворота в противоположном направлении всасывание и нагнетание меняются местами.

Привод обычно имеет три лопасти, благодаря чему обеспечивается перекладка руля на 70 0 .

Перемычки корпуса выполняют функцию стопоров, ограничивающих поворот руля.

Рулевое устройство обеспечивает управляемость судна, т. е. позволяет удерживать судно на заданном курсе и изменять направление его движения. Составными частями рулевого устройства являются: руль, рулевой двигатель, рулевой привод, пост управления и рулевая передача.

Руль служит непосредственно для сохранения или изменения направления движения судна. Он состоит из стальной плоской или обтекаемой пустотелой конструкции - пера руля и вертикального поворотного вала - баллера, жестко соединенного с пером. На верхний конец баллера (головку), выведенный на одну из палуб, насаживается сектор или рычаг - румпель.
К нему прилагается внешнее усилие, поворачивающее баллер. При установке пера руля в диаметральной плоскости движущегося судна оно будет сохранять направление движения.
Если перо руля отклонить от этого положения, то сила давления воды, действующая на перо, создаст вращающий момент, который повернет судно. Рулевой двигатель - паровая, электрическая, гидравлическая или электрогидравлическая машина, приводящая в действие руль.
Рулевой двигатель устанавливается у румпеля и соединяется с ним непосредственно, без промежуточных передач, или отдельно от румпеля.

Рулевой привод передает усилие от рулевого двигателя к баллеру. Пост управления устанавливается в рулевой рубке. Он служит для дистанционного управления рулевой машиной через штурвал, контроллер или кнопочный пульт управления.
Органы управления монтируют обычно на одной колонке с авторулевым агрегатом, рядом устанавливают путевой магнитный компас и репитер гирокомпаса. Для контроля за положением пера руля относительно диаметральной плоскости судна на колонке управления и на лобовой переборке рубки устанавливают рулевые указатели - аксиометры.

Рулевая передача служит для связи поста управления с пусковым механизмом рулевого двигателя. Наиболее простыми передачами являются механические, непосредственно соединяющие штурвал с пусковым устройством рулевого двигателя.
Но они имеют ряд существенных недостатков (низкий КПД, требуют постоянного ухода и др.) и на современных судах не применяются. Основными видами рулевых передач являются электрические и гидравлические.

рис. 61 Рули

а - обыкновенный плоский; б - обтекаемый; в - балансирный, г - полубалансирный

По конструкции пера рули могут быть плоскими и обтекаемыми.

Обыкновенный плоский руль имеет ось вращения у передней кромки руля (рис. 61, а). Перо руля 1, изготовленное из стального листа толщиной 20-30 мм, имеет ребра жесткости 2, которые идут попеременно с одной и другой стороны пера.
Они отлиты или откованы заодно с утолщенной вертикальной кромкой руля - рудерписом 3, имеющим ряд петель 4 с надежно закрепленными в них штырями 5. Этими штырями руль навешивается на петли 6 рудерпоста 9. Штыри имеют бронзовую облицовку, а петли рудер-поста - бакаутовые втулки. Нижний штырь рудерписа входит в углубление пятки ахтерштевня 10, в которое для уменьшения трения вставляется бронзовая или бакаутовая втулка с закаленной стальной чечевицей на дне. Пятка ахтерштевня через чечевицу воспринимает на себя весь вес руля.
Для предупреждения смещения руля вверх один из штырей, обычно верхний, на нижнем конце имеет головку. Верхняя часть рудерписа соединяется с баллером руля 8 при помощи специального фланца 7. Фланец несколько смещен от оси вращения, благодаря чему образуется плечо и облегчается поворот пера руля.
Смещенный фланец позволяет во время ремонта пера руля снять его с петель рудерпоста без подъема баллера, разобщив фланец и развернув перо и баллер в разные стороны.

Обыкновенные плоские рули просты по конструкции, отличаются прочностью, но создают большое сопротивление движению судна и требуют большого усилия для их перекладки. Поэтому на современных судах вместо плоских рулей применяются обтекаемые.

Перо обтекаемого руля (рис. 61, б) представляет собой сварной металлический каркас, обшитый листовой сталью (стальная оболочка водонепроницаемая). Перу придают обтекаемую форму. Для уменьшения сопротивления воды движению судна на пере руля устанавливают специальные наделки - обтекатели и придают обтекаемую форму рудерпосту.
В зависимости от положения пера руля относительно оси его вращения рули подразделяются на обыкновенные, или небалансирные, балансирные и полубалансирные.

У балансирного руля (рис. 61, в) часть пера расположена к носу судна от оси вращения. Площадь этой части, называемой балансирной, составляет от 20 до 30% всей площади пера. При перекладке руля давление встречных потоков воды на балансирную часть пера содействует повороту руля, уменьшая тем самым нагрузку на рулевую машину.
Балансирные рули, как правило, обтекаемые. Полубалансирный руль (рис. 61, г) отличается от балансирного тем, что его балансирная часть имеет меньшую высоту, чем основная.

Крепление балансирных и полубалансирных рулей осуществляется по-разному в зависимости от конструкции кормы и ахтерштевня судна. Кроме рассмотренных основных типов рулей, на некоторых судах применяются специальные рули и подруливающие устройства, позволяющие значительно улучшить маневренные качества судна. К ним относятся: активные рули, поворотные насадки, дополнительные носовые рули и подруливающие устройства.

Активные рули имеют обтекаемую форму. В каплевидной наделке на пере руля вмонтирован электродвигатель, который приводит во вращение небольшой гребной винт, установленный за задней кромкой пера. Питание на электродвигатель подается через пустотелый баллер.
Активный руль упором рулевого винта позволяет эффективно разворачивать судно, имеющее малую скорость движения или не имеющее хода, что очень важно при плавании в узкостях, при швартовке и в других случаях.

Поворотная насадка представляет собой массивное кольцо , закрепленное на баллере по типу балансирного руля. При повороте насадки струя воды, отбрасываемая гребным винтом, изменяет свое направление и этим обеспечивается поворот судна.
Такие насадки применяются на буксирах. Носовые рули балансирного типа устанавливаются в дополнение к основным для улучшения управляемости на заднем ходу. Они применяются на паромах и некоторых других судах.

Для улучшения маневренности судна используются также подруливающие устройства. Их гребные винты, насосы или крыльчатые движители создают упор в направлении, перпендикулярном ДП судна, чем способствуют эффективному развороту судна. Управляют подруливающими устройствами из рулевой рубки.