» » Способы нанесение смазки. Эффективность использования технологических смазок при горячей прокатке

Способы нанесение смазки. Эффективность использования технологических смазок при горячей прокатке

ОТРАСЛЕВОЙ СТАНДАРТ

Приказом Союзпромарматуры от «28 » марта 1975 г. № 39 срок введения установлен с «1 » января 1977 г. на срок до «1» января 1982 г.*

* Снято ограничение срока действия.

Несоблюдение стандарта преследуется по закону

Примечания: 1. Материалы, указанные со знаком*, применять по технической документации, утвержденной в установленном порядке.

Допускается применять другие материалы с аналогичными свойствами по согласованию с предприятием-разработчиком настоящего стандарта.

(Измененная редакция, Изм. № 2, 3).

Подготовку поверхностей деталей к нанесению смазок следует производить в помещении, оборудованном местной вытяжной вентиляцией. Температура воздуха в помещении - от 10 до 30 °С.

Перед нанесением смазки все трущиеся поверхности деталей следует проверить на отсутствие коррозии, очистить от загрязнения, металлической стружки, обезжирить и просушить.

Обезжиривание металлических деталей (шпинделей, резьбовых втулок, винтов, шпилек, гаек и др.) следует производить в водном моющем растворе: тринатрийфосфат технический - 15 г на литр воды и вещество вспомогательное - 2 г на литр воды. Температура моющего раствора - от 60 до 80 °С. Обезжиренные детали следует промыть 0,1-процентным раствором двухромовокислого калия. Температура раствора - от 60 до 80 °С.

Допускается при выпуске арматуры партиями до 4000 штук обезжиривание металлических деталей производить двукратной промывкой керосином последовательно в двух ваннах в течение 10 минут. Для первой промывки следует использовать керосин из второй промывочной ванны. При первой промывке рекомендуется пользоваться капроновыми ершами или малярными кистями.

Обезжиривание резьбовой части шпинделей в сильфонных сборках следует производить хлопчатобумажной салфеткой, смоченной в спирте и отжатой до полусухого состояния.

Антифрикционные смазки и материалы для промывки и обезжиривания должны быть согласованы заказчиком.

Подготовить подшипники качения к нанесению смазки:

обезжирить в ваннах с керосином в течение 20 минут и в ванне со спиртом в течение 3 минут.

Обезжиривание резиновых деталей следует производить двукратной протиркой хлопчатобумажными салфетками, смоченными в этиловом спирте.

Контроль чистоты поверхности следует производить:

а) визуальным осмотром;

б) хлопчатобумажной салфеткой (только для деталей специальной арматуры).

При протирке поверхностей деталей сухая хлопчатобумажная салфетка должна оставаться чистой.

Если салфетка будет иметь следы грязи или масла, детали следует отправить на повторную промывку.

Сушка деталей после обезжиривания должна производиться:

а) после обработки моющим раствором - по технологии предприятия-изготовителя;

б) после обработки растворителями - на воздухе до полного удаления запаха растворителя.

Температура воздуха - от 10 до 30 °С.

Время сушки - от 10 до 30 минут.

Сильфонные сборки специальной арматуры следует дополнительно просушить в течение от 15 до 30 минут в термостате при температуре от 100 до 110 °С.

Контроль качества сушки деталей и узлов следует производить с помощью фильтровальной бумаги: на поверхности фильтровальной бумаги, приложенной к детали, не должно оставаться следов растворителя. Допускается контроль качества сушки деталей арматуры общепромышленного назначения производить визуально.

Периодичность смены растворителей устанавливается технологическим процессом в зависимости от объема, количества промываемых деталей и норм расхода, установленных настоящим стандартом.

Антифрикционные смазки на поверхность деталей следует наносить в условиях, гарантирующих смазываемые поверхности от грязи, влаги. Температура воздуха в помещении - от 10 до 30 °С.

Марка смазки указывается в чертежах и должна удовлетворять требованиям действующих стандартов. Не допускаются к применению смазки, имеющие поврежденную упаковку, а также не имеющие упаковочного листа или паспорта, подтверждающего соответствие данной партии требованиям соответствующих стандартов.

Смазку на трущиеся поверхности деталей арматуры следует наносить непосредственно перед сборкой арматуры согласно указаниям чертежей, карт смазки, технических требований или инструкций по эксплуатации арматуры. Антифрикционные смазки могут быть использованы в течение года со дня вскрытия тары и должны храниться при температуре от 10 до 30 °С в условиях, гарантирующих смазки от попадания грязи и влаги.

(Измененная редакция, Изм. № 3).

При выполнении работ по подготовке поверхности деталей к нанесению смазки:

а) концентрация паров керосина в помещении, где происходит обезжиривание, не должна превышать 10 мг на 1 дм воздуха:

б) конструкция оборудования, используемого при обезжиривании, должна обеспечить защиту работающих от попадания растворителя;

в) рабочие, производящие обезжиривание растворителями, должны быть обеспечены фартуками, обувью, перчатками, респираторами;

г) рабочие, производящие обезжиривание водными моющими растворами, должны обеспечиваться резиновыми фартуками, обувью и перчатками.

На предприятии должна быть разработана и утверждена главным инженером инструкция по требованиям безопасности, пожарной безопасности и промышленной санитарии, учитывающая местные производственные условия.

К выполнению работ по подготовке поверхностей деталей к нанесению смазок допускаются лица, изучившие устройство оборудования и технологический процесс и прошедшие инструктаж по требованиям безопасности, пожарной безопасности и промышленной санитарии.

ГОСТ 9.054-75

Группа Т99

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система защиты от коррозии и старения

КОНСЕРВАЦИОННЫЕ МАСЛА, СМАЗКИ И ИНГИБИРОВАННЫЕ
ПЛЕНКООБРАЗУЮЩИЕ НЕФТЯНЫЕ СОСТАВЫ

Методы ускоренных испытаний защитной способности

Unified system of corrosion and ageing protection.
Anticorrosive oils, greases and inhibited film-forming petroleum compounds.
Accelerated test methods of protective ability


МКС 19.040
75.100

Дата введения 1976-07-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 11 мая 1975 г. N 1230 дата введения установлена 01.07.76

Ограничение срока действия снято по протоколу N 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

ИЗДАНИЕ с Изменениями N 1, 2, 3, 4, утвержденными в июне 1980 г., июне 1985 г., декабре 1985 г., декабре 1989 г. (ИУС 8-80, 10-85, 3-86, 3-90).


Настоящий стандарт распространяется на масла, смазки и нефтяные ингибированные пленкообразующие нефтяные составы (далее - консервационные материалы), применяемые в качестве средств временной противокоррозионной защиты изделий.

Стандарт устанавливает методы лабораторных ускоренных испытаний (далее - испытания) для оценки защитной способности коксервационных материалов.

Стандарт устанавливает шесть методов испытаний:

1-й - при повышенных значениях относительной влажности и температуры воздуха, без конденсации, с периодической или постоянной конденсацией влаги;

2-й - при повышенных значениях относительной влажности и температуры воздуха и воздействии сернистого ангидрида с периодической конденсацией влаги;

3-й - при воздействии соляного тумана;

4-й - при постоянном погружении в электролит;

5-й - при воздействии бромистоводородной кислоты;

6-й - при повышенных значениях относительной влажности и температуры, с постоянной конденсацией в первой части цикла в условиях контакта разнородных металлов.

Метод испытаний или комплекс методов, установленных настоящим стандартом, выбирают в зависимости от цели испытаний консервационного материала и условий размещения изделий по приложению 1.



1. МЕТОД 1

Сущность метода заключается в выдерживании консервационных материалов, нанесенных на металлические пластинки, в условиях повышенной относительной влажности воздуха и температуры, без конденсации, с периодической или постоянной конденсацией влаги на образцах.

1.1. Отбор образцов

1.1.1. Образцами для испытаний служат консервационные материалы, отвечающие требованиям, установленным нормативно-технической документацией на эти материалы.

1.2. Аппаратура, материалы, реактивы

1.2.1. Для проведения испытаний применяют следующие аппаратуру, материалы и реактивы:

камеры с автоматическим (или неавтоматическим) регулированием параметров относительной влажности и температуры воздуха;

ГОСТ 1050-88 и (или) меди марки М0, M1 или М2 по ГОСТ 859-2001 и (или) алюминия марки АК6 по ГОСТ 4784-97 ;

стаканы стеклянные по ГОСТ 25336-82 ;

растворители органические: бензин по ГОСТ 1012-72 и спирт по ГОСТ 18300-87 ;

эксикатор по ГОСТ 25336-82 ;

чашки фарфоровые по ГОСТ 9147-80 ;

термостат или сушильный шкаф, обеспечивающий заданную температуру;

вода дистиллированная рН=5,4-6,6.


1.2.2. Требования к устройству камер с автоматическим регулированием параметров относительной влажности и температуры воздуха, способам создания, поддержания и регулирования режимов в рабочем объеме камеры должны соответствовать требованиям ГОСТ 9.308-85 .

1.2.3. При использовании для испытаний камеры с неавтоматическим регулированием относительной влажности и температуры воздуха соотношение объема камеры и площади поверхности металлических пластинок должно быть не менее 25 см на 1 см. Для выравнивания параметров режима в камере должна быть предусмотрена циркуляция воздуха со скоростью не более 1 м/с.

Конструкция камеры должна исключать возможность попадания конденсата на испытуемые образцы с элементов конструкций камер и вышерасположенных образцов и обеспечивать равномерное воздействие на них коррозионной среды.

При испытании пластичных смазок допускается применение эксикаторов.


1.2.4. В камере для испытаний должен быть обеспечен заданный режим в течение всего времени испытаний.

1.2.5. Для испытаний применяют пластинки поверхностью [(50,0x50,0)±0,2] мм, толщиной 3,0-5,5 мм.

Допускается при проведении исследовательских испытаний применять пластинки других размеров и из других металлов и сплавов.

Испытание пластичных смазок проводят на пластинках, марка металла которых указана в нормативно-технической документации на испытуемый материал.

(Измененная редакция, Изм. N 1, 2, 4).

1.2.6. Непараллельность больших граней пластинок при испытаниях пластичных смазок не должна превышать 0,006 мм.

1.2.7. Шероховатость поверхности пластинок () должна быть в пределах 1,25-0,65 мкм по ГОСТ 2789-73 .

1.2.8. Пластинка должна иметь отверстие для подвешивания, расположенное посредине одной из сторон, на расстоянии 5 мм от края.

1.2.9. Пластинки должны иметь маркировку (порядковый номер) на поверхности или на бирках из неметаллических материалов, прикрепленных к пластинке капроновой нитью.

1.3. Подготовка к испытаниям

1.3.1. Пластинки обезжиривают последовательно бензином и спиртом, затем высушивают.

Не допускается касаться руками поверхности подготовленных к испытаниям пластинок.

1.3.2. Одну пластинку помещают в эксикатор (для сравнения с испытуемыми при оценке результатов).

1.3.3. Для нанесения на испытуемые пластинки масел и тонкопленочных покрытий пластинки, подвешенные на крючки вертикально, погружают на 1 мин в консервационный материал при температуре 20 °С - 25 °С, затем пластинку извлекают и выдерживают на воздухе в подвешенном состоянии в течение времени, установленного технической документацией на данный консервационный материал, но не менее 1 ч для масел и не менее 20 ч для пленочных покрытий.

1.3.4. Пластичные смазки наносят на поверхность пластинок слоем 1 мм с помощью трафарета или одним из способов, указанных в приложении 2.

1.3.5. Пластинки с нанесенными консервационными материалами подвешивают в камере в вертикальном положении.

Пластины с пластичными смазками, испытуемыми в эксикаторе, допускается располагать горизонтально.

1.3.4, 1.3.5. (Измененная редакция, Изм. N 1).

1.3.6. Расстояние между пластинками, а также между пластинками и стенками камеры должно быть не менее 50 мм.

1.3.7. Расстояние от нижних граней пластинок до дна камеры должно быть не менее 200 мм.

1.3.8. Количество пластинок (не менее трех) каждой марки металла устанавливают с учетом необходимости промежуточных съемов образцов.

1.3.9. В эксикатор наливают дистиллированную воду на высоту 30-35 мм от дна.

На выступ внизу цилиндрической части эксикатора помещают фарфоровую вставку с отверстиями.

Чашки с пластинками устанавливают в эксикатор, который закрывают крышкой и помещают в термостат, нагретый до температуры испытания смазок.

(Измененная редакция, Изм. N 1).

1.4. Проведение испытаний

1.4.1. Испытания проводят по трем режимам: без конденсации, с периодической и постоянной конденсацией влаги на образцах.

Испытание пластичных смазок проводят по режиму с постоянной конденсацией влаги.

(Измененная редакция, Изм. N 1).

1.4.2. Испытания без конденсации влаги на образцах проводят при температуре (40±2) °С и относительной влажности 95%-100%.

1.4.3. Испытания с периодической конденсацией влаги на образцах проводят циклами. Каждый цикл испытаний состоит из двух частей.

В первой части цикла образцы подвергают воздействию воздушной среды с температурой (40±2) °С и относительной влажностью 95%-100% в течение 7 ч.

Во второй части цикла создают условия конденсации влаги на образцах путем их охлаждения до температуры ниже температуры камеры на 5 °С - 10 °С или охлаждением образцов и камеры одновременно путем выключения нагрева камеры.

Продолжительность второй части цикла 17 ч.

1.4.2, 1.4.3.

1.4.4. Испытания при постоянной конденсации влаги на образцах проводят при температуре (49±2) °С и относительной влажности 100%.

1.4.5. Начало испытаний считают с момента достижения всех параметров режима.

1.4.6. Продолжительность испытаний устанавливают нормативно-технической документацией на консервационный материал или в соответствии с целью проведения испытаний.

1.4.7. В процессе испытаний производят осмотр пластинок или съем части пластинок через равные промежутки времени от начала испытаний, но не реже одного раза в сутки для установления времени появления первого коррозионного очага.

При проведении сравнительных испытаний первый осмотр образцов допускается проводить с учетом времени, установленного для испытаний образца с известной защитной способностью.

1.4.8. Вынужденные перерывы, превышающие 10% общего времени испытаний, должны быть зафиксированы и учтены при оценке защитных способностей материалов.

1.4.9. После испытания с пластин снимают смазку фильтровальной бумагой и ватой, смоченной бензином, а затем промывают бензином и осматривают.

(Измененная редакция, Изм. N 1).

1.5. Обработка результатов

1.5.1. Коррозионным разрушением считают коррозионные очаги на поверхности металлических пластинок в виде отдельных точек, пятен, нитей, язв, а также изменение цвета на меди до зеленого, темно-коричневого, фиолетового, черного, на алюминии - до светло-серого.

1.5.2. Защитную способность пластичных смазок оценивают визуально за время, указанное в нормативно-технической документации на испытуемый материал.

Смазка считается выдержавшей испытание, если на больших поверхностях пластинок на расстоянии не менее 3 мм от отверстия и краев нет заметных невооруженным глазом зелени, пятен или точек. Если следы коррозии будут замечены только на одной пластинке, испытание повторяют. При повторном обнаружении следов коррозии хотя бы на одной пластинке смазку считают не выдержавшей испытание.

Защитную способность масел и ингибированных пленкообразующих нефтяных составов оценивают по площади коррозионного разрушения за определенное время испытаний и (или) по времени появления первого минимального коррозионного очага.

Продукты коррозии с поверхности пластинок снимают согласно требованиям ГОСТ 9.909-86 .

(Измененная редакция, Изм. N 1, 4).

1.5.3. За минимальный коррозионный очаг принимают коррозионное разрушение в виде:

одной коррозионной точки диаметром не более 2 мм;

двух коррозионных точек диаметром менее 1 мм, видимых невооруженным глазом.

Коррозионные очаги на торцах пластинок и на расстоянии менее 3 мм от краев не учитывают.


1.5.4. Для оценки защитной способности консервационных материалов по площади коррозионного поражения определяют процент площади коррозионных очагов от площади испытуемой пластинки.

1.5.5. Площадь коррозионных очагов определяют визуально трафаретом, изготовленным из прозрачного материала (кальки, тонкого органического стекла, целлулоида и т.п.), с нанесенной на него сеткой из ста равных ячеек. Размеры трафарета должны соответствовать размерам пластинки [(50,0x50,0)±0,2] мм.

Трафарет накладывают на поверхность пластинки и производят суммирование процентов площади коррозионных очагов, полученных в каждом делении трафарета.

(Измененная редакция, Изм. N 2).

1.5.6. Определение площади коррозионного разрушения на пластинках других размеров производят в соответствии с требованиями ГОСТ 9.308-85 .

1.5.7. (Исключен, Изм. N 4).

1.5.8. Защитную способность консервационных материалов можно определить по изменению цвета и блеска поверхности металлической пластинки.

Определение степени блеска поверхности металлической пластинки производят визуально путем сравнения поверхности испытуемой металлической пластинки с пластинкой, хранящейся в эксикаторе (п.1.3.2).

1.5.9. Изменение блеска и цвета поверхности пластинки допускается определять также путем измерения отражательной способности поверхности пластинки согласно требованиям ГОСТ 9.308-85 .

Равномерное изменение цвета поверхности пластинки из черных металлов до светло-серого и незначительное изменение цвета пластинки из цветных металлов с сохранением металлического блеска не считают коррозионными разрушениями.

1.5.10. Допускается оценивать защитную способность масел и ингибированных пленкообразующих нефтяных составов по изменению массы за время испытаний. Оценку защитных способностей весовым методом проводят по показателю коррозии () в г/м, вычисляемому по формуле

где - изменение массы пластинки, г;

- площадь поверхности пластинки, м.

(Измененная редакция, Изм. N 4).

1.5.11. Защитную способность консервационных материалов оценивают по среднему арифметическому результату значений, определенных на параллельно испытываемых пластинках.

Расхождение результатов испытаний на отдельных пластинках не должно превышать 20%.

2. МЕТОД 2

Сущность метода заключается в выдерживании консервационных материалов (кроме рабоче-консервационных масел), нанесенных на металлические пластинки, в атмосфере повышенных значений температуры и относительной влажности воздуха при воздействии сернистого ангидрида с периодической конденсацией влаги на образцах.

2.1. Отбор образцов - по п.1.1.

2.2. Аппаратура, материалы, реактивы - по п.1.2.

Камера для испытаний из органического стекла или другого коррозионно-стойкого материала, снабженная оборудованием, обеспечивающим постоянную концентрацию сернистого ангидрида в камере и контроль концентрации в течение времени испытаний;

ангидрид сернистый жидкий технический по ГОСТ 2918-79 .

2.3. Подготовка к испытаниям - по п.1.3, кроме п.1.3.4.



(Измененная редакция, Изм. N 1).

2.4. Проведение испытаний

2.4.1. Испытания проводят циклами.

Каждый цикл испытаний состоит из двух частей:

в первой части цикла образцы подвергают воздействию сернистого ангидрида в концентрации 0,015% объемных при температуре (40±2) °С и относительной влажности воздуха 95-100% в течение 7 ч;

во второй части цикла создают условия конденсации влаги на образцах по п.1.4.3. Продолжительность второй части цикла - 17 ч.

(Измененная редакция, Изм. N 2).

2.4.2. Подачу сернистого ангидрида в камеру и контроль его содержания осуществляют по ГОСТ 9.308-85 . Допускается применять другие способы подачи сернистого ангидрида и другие способы контроля его содержания в камере, обеспечивающие поддержание заданного режима.

2.4.3. Дальнейший порядок проведения испытаний соответствует требованиям пп.1.4.5-1.4.8.

2.5. Обработка результатов - по п.1.5.

3. МЕТОД 3

Сущность метода заключается в выдерживании консервационных материалов, нанесенных на металлические пластинки, в атмосфере соляного тумана.

3.1. Отбор образцов - по п.1.1.

3.2. Аппаратура, материалы, реактивы - по п.1.2.

Натрий хлористый по ГОСТ 4233-77 .

3.3. Подготовка к испытаниям - по п.1.3, кроме п.1.3.4.

При проведении исследовательских испытаний пластичных смазок последние наносят на поверхность пластинок слоем (0,030±0,005) мм одним из способов, указанных в приложении 2.

(Измененная редакция, Изм. N 1).

3.4. Проведение испытаний

3.4.1. В камере устанавливают температуру (35±2) °С и создают атмосферу соляного тумана распылением 5%-ного раствора хлористого натрия.

3.4.2. Дисперсность и водность соляного тумана контролируют по ГОСТ 15151-69 .

3.4.3. Дальнейший порядок проведения испытаний соответствует требованиям пп.1.4.5-1.4.8.

3.5. Испытания допускается проводить по методу, изложенному в приложении 3.

3.6. Обработка результатов - по п.1.5.

4. МЕТОД 4

Сущность метода заключается в выдерживании консервационных материалов, нанесенных на металлические пластинки, в растворе электролита.

4.1. Отбор образцов - по п.1.1.

4.2. Аппаратура, материалы, реактивы:

пластинки металлические по пп.1.2.1, 1.2.5-1.2.9;

стаканы стеклянные по ГОСТ 25336-82 ;

магний хлористый по ГОСТ 4209-77 ;

кальций хлористый по ТУ 6-09-5077-87; ТУ 6-09-4711-81;

натрий сернокислый по ГОСТ 4166-76 , ГОСТ 4171-76 ;

натрий хлористый по ГОСТ 4233-77 ;

натрий углекислый по ГОСТ 83-79 , ГОСТ 84-76 ;

(Измененная редакция, Изм. N 4).

4.3. Подготовка к испытаниям

4.3.1. Металлические пластинки подготавливают по пп.1.3.1-1.3.3.

4.3.2. Готовят электролит (раствор солей в дистиллированной воде), рецептура которого приведена в табл.1.

Таблица 1

Наименование солей

Концентрация, г/л (в расчете на сухое вещество)

Магний хлористый

Кальций хлористый

Натрий сернокислый

Натрий хлористый

4.3.1, 4.3.2. (Измененная редакция, Изм. N 4).

4.3.3. Готовят 25%-ный раствор углекислого натрия в дистиллированной воде.

4.3.4. Устанавливают рН электролита в пределах 8,0-8,2 путем добавления раствора углекислого натрия, подготовленного по п.4.3.3.

4.4. Проведение испытаний

4.4.1. Пластинки с нанесенными на них консервационными материалами погружают в раствор электролита, в котором выдерживают при комнатной температуре в течение времени, установленного нормативно-технической документацией на консервационный материал, но не менее 20 ч.

Пластинки из разных металлов погружать в электролит одновременно не допускается.

4.4.2. Уровень электролита в стакане должен быть на 10-15 мм выше верхнего края пластинок. Расстояние от нижних граней пластинок до дна стеклянного стакана должно быть не менее 10-15 мм.

(Измененная редакция, Изм. N 4).

4.4.3. После испытаний пластинки протирают, промывают opганическими растворителями и осматривают.

4.5. Обработка результатов - по п.1.5.

5. МЕТОД 5

Сущность метода заключается в определении способности масел вытеснять бромистоводородную кислоту с поверхности металлической пластинки.

5.1. Отбор образцов - по п.1.1.

5.2. Аппаратура, материалы, реактивы:

пластинки металлические из стали марки 10 по ГОСТ 1050-88 ;

кислота бромистоводородная по ГОСТ 2062-77 ;

стаканы стеклянные по ГОСТ 25336-82 .

(Измененная редакция, Изм. N 4).

5.3. Подготовка к испытаниям

5.3.1. Металлические пластинки подготавливают по п.1.3.1.

5.3.2. Готовят 0,1%-ный раствор бромистоводородной кислоты.

5.4. Проведение испытаний

5.4.1. В стеклянный стакан наливают не менее 200 см испытываемого консервационного материала, в другой стакан - раствор бромистоводородной кислоты.

5.4.2. Пластинку погружают не более чем на 1 с в раствор бромистоводородной кислоты, затем извлекают из раствора и 12 раз в течение 1 мин погружают в испытуемое масло при комнатной температуре.

5.4.3. Пластинки подвешивают и выдерживают на воздухе при комнатной температуре в течение 4 ч, затем промывают органическими растворителями и осматривают.

5.5. Обработка результатов - по п.1.5.

6. МЕТОД 6

Сущность метода заключается в выдерживании консервационных и рабоче-консервационных масел, нанесенных на стальные пластинки, находящиеся в контакте с медью, в условиях повышенных температуры и относительной влажности воздуха при непрерывной конденсации влаги в первой части цикла.

6.1. Отбор образцов - по п.1.1.


6.2. Аппаратура, материалы, реактивы:

камера влажности или любой термостат, обеспечивающие температуру нагрева (50±1) °С и относительную влажность воздуха 95%-100%;

ультратермостат любого типа, обеспечивающий температуру дистиллированной воды (30±1) °С;

весы аналитические по ГОСТ 24104-2001 ;

ячейки стеклянные (см. черт.1 приложения 4), снабженные отводами для подключения к ультратермостату;

термометр ТЗК-3П по ГОСТ 9871-75 ;

термометр ТЛ-21-Б2 по ТУ 25-2021.003-88;

трубки резиновые с внутренним диаметром 6-8 мм;

пластинки металлические из стали 10 по ГОСТ 1050-88 , с диаметром (22,00±0,52) мм и толщиной (4,0±0,3) мм. Пластины должны иметь в центре отверстия диаметром 3 мм и резьбой М3;

пластины из меди марок М0, M1 или М2 по ГОСТ 859-78 *, диаметром (7,00±0,36) мм и толщиной (4,00±0,30) мм;
_________________
* На территории Российской Федерации действует ГОСТ 859-2001 . - Примечание "КОДЕКС".

бумага фильтровальная по ГОСТ 12026-76 ;

шкурка шлифовальная на тканевой или бумажной основе любого типа по ГОСТ 5009-82 или ГОСТ 6456-82 ;

вода дистиллированная рН=5,4-6,6;

кислота соляная по ГОСТ 3118-77 , 20%-ный раствор;

ингибитор БА-6 или ПБ-5 по нормативно-технической документации;

растворители по п.1.2.1.

(Измененная редакция, Изм. N 3, 4).

6.3. Подготовка к испытанию

6.3.1. Стальные пластинки обрабатывают шлифовальной шкуркой со всех сторон до шероховатости от 1,25 до 0,65 мкм по ГОСТ 2789-73 , затем промывают бензином, спиртом, высушивают между листами фильтровальной бумаги и определяют массу с погрешностью не более 0,0002 г.

6.3.2. После взвешивания стальные пластины промывают бензином, спиртом, высушивают между листами фильтровальной бумаги, подвешивают на стеклянные крючки и погружают на 1 мин в испытуемое масло при температуре помещения, затем выдерживают на воздухе в течение 1 ч.

Медные пластинки консервационным материалом не покрывают.

6.3.3. Собирают прибор согласно принципиальной схеме (см. черт.2 приложения 4).

6.3.4. Наружную часть стеклянных ячеек промывают бензином, спиртом и устанавливают в камеру влажности.

Отводные трубки стеклянной ячейки с помощью резиновых шлангов соединяют с ультратермостатом, заполненным дистиллированной водой для охлаждения стеклянной ячейки.

6.4. Проведение испытания

6.4.1. Подготовленные металлические пластинки (п.6.3) помещают на горизонтальную поверхность стеклянной ячейки (черт.2 приложения 4).

6.4.2. После установки металлических пластинок включают ультратермостат и камеру влажности.

6.4.3. Время начала испытаний отсчитывают с момента достижения температуры паровоздушного пространства в камере влажности (50±1) °С, температуры воды в ультратермостате (30±1) °С.

6.4.4. Испытания проводят циклами. Каждый цикл состоит из двух частей: 7 ч испытаний на заданном режиме и 17 ч при отключенных камере влажности и ультратермостате.

6.4.5. Продолжительность испытаний устанавливают в нормативно-технической документации на масло или в соответствии с целью испытаний.

6.4.6. По окончании испытаний пластинки извлекают и промывают в бензине. Продукты коррозии с поверхности стальных пластинок снимают ингибированной 20%-ной соляной кислотой, погружая на 5 мин в раствор, при этом продукты коррозии с поверхности пластинок удаляют жесткой кистью или щеткой, затем промывают от кислоты под струей водопроводной воды, дистиллированной водой, спиртом, высушивают между листами фильтровальной бумаги и определяют массу с погрешностью не более 0,0002 г.

6.5. Обработка результатов

6.5.1. Оценку защитной способности масла проводят по изменению массы стальных пластинок по формуле п.1.5.10.

6.5.2. За результат испытания принимают среднеарифметическое результатов двух параллельных определений.

6.6. Точность метода

6.6.1. Сходимость

Два результата определений, полученные последовательно одним исполнителем, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значения, указанного в табл.2.

(Измененная редакция, Изм. N 3).

6.6.2. Воспроизводимость

Два результата испытаний, полученные в двух разных лабораториях, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значения, приведенного в табл.2.

Таблица 2

Изменение массы стальных пластинок на единицу площади

Сходимость

Воспроизводимость

До 2 включ.

Св. 2 до 5

16% от среднеарифметического


(Измененная редакция, Изм. N 3, 4).

ПРИЛОЖЕНИЕ 1. ВЫБОР МЕТОДОВ ИСПЫТАНИЙ

ПРИЛОЖЕНИЕ 1

Условия размещения изделий

Методы испытаний по настоящему стандарту

На открытой площадке, под навесом и в закрытом неотапливаемом помещении

Условно-чистая

1-й с периодической и постоянной конденсацией влаги, 5* и 6-й**

Промышленная

1-й с периодической и постоянной конденсацией влаги, 2, 5* и 6-й**

Морская

1-й с периодической и постоянной конденсацией влаги, 2, 3, 4, 5* и 6-й**

В помещении с регулируемыми параметрами

Условно-чистая, промышленная, морская

1-й без конденсации влаги

_______________
* Метод 5 применяют только при оценке защитной способности масел.

** Метод 6 применяют для испытания консервационных и рабоче-консервационных масел в условиях контакта разнородных металлов.


ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. N 2, 3).

ПРИЛОЖЕНИЕ 2 (рекомендуемое). СПОСОБЫ НАНЕСЕНИЯ ПЛАСТИЧНЫХ СМАЗОК НА ПОВЕРХНОСТЬ ПЛАСТИНО

СПОСОБЫ НАНЕСЕНИЯ ПЛАСТИЧНЫХ СМАЗОК НА ПОВЕРХНОСТЬ ПЛАСТИНОК

Пластичные смазки наносят на металлические пластинки тремя способами:

1. Нанесение смазки растиранием

1.1. Смазку наносят на одну сторону поверхности пластинки вручную с последующим растиранием пластинки о пластинку.

1.2. Толщину слоя смазки контролируют взвешиванием на аналитических весах с погрешностью не более ±0,0002 г. Толщину () слоя смазки, мм, вычисляют по формуле

где - масса пластинки со смазкой, г;

- масса чистой пластинки, г;

- площадь поверхности пластинки, см;

0,9 - средняя плотность смазки, г/см.

Для смазок с существенно отличным (более чем на 0,2 г/см) значением плотности в формулу подставляют истинное значение плотности.

1.3. Другую сторону пластинки и боковые поверхности защищают лакокрасочным покрытием или той же смазкой.

2. Нанесение смазки с применением ножевого устройства

2.1. Для нанесения слоя смазки на металлическую пластинку применяют устройство (см. чертеж), которое состоит из корпуса 1, на рабочей поверхности которого имеется квадратный вырез размером [(50,0x50,0)±0,2] мм, переходящий в цилиндрический; подвижной площадки 2, выполненной совместно с ходовым винтом, подающей гайки 10, приводящей в поступательное движение ходовой винт с площадкой; ножа 5, перемещающегося вдоль стола по направляющим 6; пластинчатых пружин 9, которые прижимают друг к другу притертые поверхности стола и ножа; индикатора 7, обеспечивающего измерения перемещений площадки и толщины слоя смазки 4 с погрешностью не более ±0,002 мм; металлической пластинки 3, на которую наносится смазка; кронштейна 8 для закрепления индикатора.

2.2. Подготовка устройства

Шток индикатора выводят в крайнее верхнее положение. Центр иглы индикатора совмещают с центром подвижной площадки. Положение штока фиксируют защелкой, укрепленной на кронштейне. Затем вынимают нож, промывают его бензином, спиртобензольной смесью и протирают безворсовой хлопчатобумажной тканью. Подвижную площадку устройства выводят в крайнее нижнее положение. Стенки выреза и подвижную площадку протирают последовательно хлопчатобумажной тканью, смоченной бензином, спиртобензольной смесью и насухо хлопчатобумажной тканью; после этого площадку поднимают до уровня стола.

2.3. Нанесение смазки на металлическую пластинку

Металлическую пластинку, подготовленную по п.1.3.1 настоящего стандарта, кладут на подвижную площадку. Вращая подающую гайку, опускают площадку с пластинкой так, чтобы ее поверхность была ниже поверхности стола устройства. Вставляют нож скосом от себя и подводят его под шток индикатора. Шток освобождают из защелки, опускают до касания верхней грани ножа и медленно поднимают подвижную площадку с пластинкой. Как только стрелка индикатора дрогнет, прекращают подъем площадки с пластинкой, поднимают шток индикатора и перемещают нож в крайнее от себя положение. Затем опускают шток индикатора до соприкосновения с пластинкой. Показание стрелки индикатора принимают за нулевое. После этого подвижную площадку медленно опускают. Пластинку прекращают опускать в тот момент, когда стрелка индикатора дойдет до деления, соответствующего требуемой толщине слоя смазки. После этого шток индикатора поднимают в крайнее верхнее положение. На пластинку наносят с некоторым избытком смазку, следя за тем, чтобы в ней не было пузырьков воздуха и посторонних включений. Избыток смазки срезают, перемещая нож устройства к себе и от себя до полного выравнивания поверхности смазки.

При образовании на поверхности смазки пустот и задиров повторно наносят смазку на места задиров, а пустоты прокалывают и заполняют смазкой, после чего срезают ножом излишек смазки.

После того, как смазка будет нанесена на пластинку, поднимают площадку и снимают пластинку.

(Измененная редакция, Изм. N 4).

2.4. Незащищенную поверхность пластинки и боковые грани защищают от коррозии по п.1.3.

3. Нанесение смазки погружением

Способ применяют для нанесения углеводородных смазок.

Смазку нагревают до температуры на 20-25 °С выше температуры плавления, но не ниже 100 °C. Пластинки, подвешенные на крючки, погружают в расплавленную смазку и выдерживают не менее 5 мин.

Толщину слоя смазки регулируют изменением температуры нагрева смазки, времени выдержки пластинки в расплаве и скорости ее извлечения из расплава.

Контроль толщины слоя смазки производят по п.1.2.

ПРИЛОЖЕНИЕ 3 (справочное). МЕТОД ИСПЫТАНИЙ ПРИ ВОЗДЕЙСТВИИ СОЛЯНОГО ТУМАНА

ПРИЛОЖЕНИЕ 3
Справочное

МЕТОД ИСПЫТАНИЯ ПРИ ВОЗДЕЙСТВИИ СОЛЯНОГО ТУМАНА

1. Отбор образцов для испытаний, их подготовку, режим испытаний, контроль на водность, дисперсность, обработку результатов производят в соответствии с требованиями настоящего стандарта.

2. Аппаратура

Для проведения испытаний применяют камеру из органического стекла или иного коррозионно-стойкого материала. Размер камеры 510x500x760 мм.

Камера должна иметь в боковой стенке герметически закрывающуюся дверцу размером 200x320 мм, а в верхней стенке - два отверстия диаметром 6-7 мм для выхода воздуха.

На расстоянии 20 мм от дна камеры размещают подогреватель (спираль из нихромовой проволоки, заключенная в трубку из кварца или термостойкого стекла). Камера должна быть снабжена терморегулятором для автоматического регулирования нагрева.

В центре дна камеры устанавливают пульверизатор, к которому подводят сжатый воздух.

На расстоянии 80-100 мм от пульверизатора закрепляют экран-пластинку из органического стекла размером 200x250 мм для предотвращения попадания брызг раствора на пластинки с нанесенными консервационными материалами.

3. Подготовка к испытаниям

На дно камеры наливают соляной раствор до уровня 70-80 мм и поддерживают его постоянным путем периодического добавления; устанавливают заданную температуру и включают подачу сжатого воздуха. Расход воздуха устанавливают в пределах 12-15 дм/мин.

ПРИЛОЖЕНИЕ 4 (обязательное). АППАРАТУРА ДЛЯ МЕТОДА 6

ПРИЛОЖЕНИЕ 4
Обязательное

Черт.1. Стеклянная ячейка

Стеклянная ячейка

1 - отводная трубка; 2 - горизонтальная поверхность стеклянной ячейки

Черт.2. Принципиальная схема прибора для проведения испытаний

Принципиальная схема прибора для проведения испытаний

1 - камера влажности; 2 - ультратермостат; 3 - ртутные стеклянные
лабораторные термометры; 4 - контактные термометры; 5 - резиновые шланги;
6 - стеклянная ячейка; 7 - медная пластинка; 8 - стальная пластинка

ПРИЛОЖЕНИЕ 4. (Введено дополнительно, Изм. N 3).



Текст документа сверен по:
официальное издание
Смазочные материалы, индустриальные
масла и родственные продукты.
Методы анализа: Сб. стандартов. -
М.: Стандартинформ, 2006

13.1. Чистка форм.

13.2. Смазка форм.

13.3. Виды смазок.

13.4. Способы нанесения смазки.

Срок службы форм зависит не только от надежности их конструкции, но и от ухода за ними в процессе эксплуатации.

Основные требования правильной эксплуатации сводятся к тщательной очистке форм, освобожденных от изделий, к применению хорошей смазки, облегчающей извлечение готовых изделий, а также к рациональной организации текущего и предупредительного планового ремонта форм.

13.1. Чистка форм.

При формовании изделий на металлической форме или поддоне после распалубки остаются мелкие кусочки бетона, поверхности покрываются цементной пленкой, остатками смазки и др. Если форму не чистить, на ней образуется слой затвердевшего бетона, который ухудшает качество изделий и затрудняет их распалубку.

Поэтому формы после каждого цикла формования очищают, применяя для этого различные приспособления.

Машины с абразивными кругами:

Применяются только для периодической чистки форм (1 раз в 2 – 3 месяца). При этом поверхности формы должны быть гладкими.

При частом использовании таких машин очищаемые поверхности быстро изнашиваются.

Машины с металлическими мягкими щетками:

Такие машины эффективны только на незапущенных поддонах для очистки их после каждого цикла промывания. Применение жестких щеток не желательно, т.к. царапают поверхность металла, что увеличивает сцепление бетона с поддоном.

Машины с инерционной фрезой:

Фреза имеет 6 пальцев, на которых свободно висят металлические кольца. При вращении фрезы кольца ударяют по очищаемой поверхности поддона и дробят оставшуюся на нем пленку схватившегося цемента.

Форму очищают по двум схемам:

1) Машина передвигается над формой (форма не подвижна)

2) Форма перемещается под машиной.

Рис. 70. Инерционная фреза

Вид А (сверху)

Рис. 71. Блок инерционных фрез: 1 – инерционная фреза

Блок инерционных фрез – 1 – располагаются в шахматном порядке.

После обработки поддона инерционной фрезой все остатки, отделившиеся частицы сметают с поверхности металлическими щетками.

Химический способ очистки форм:

Основан на свойстве некоторых кислот (соляной), разрушать цементную пленку. Для очистки необходим: 7-15% раствор технической соляной кислоты, в зависимости от толщины пленки, температуры форм.

Например, при увеличении температуры формы с 20 о С до 50 о С скорость реакции увеличивается в 10 раз.

13.2. Смазка форм.

На качество железобетонных изделий существенно влияет сцепление бетона с поверхностью формы.

Одним из способов уменьшения сцепления является применение различных смазок.

Смазка для форм должна удовлетворять следующим требованиям:

1) По консистенции должна быть пригодной для нанесения распылителем или кистью на холодные или нагретые до 40 о С поверхности формы.

2) Ко времени извлечения изделия из формы смазка должна превращаться в прослойку, не вызывающую сцепления с поверхностью форм.

3) Не оказывать вредного воздействия на бетон, не приводить к образованию пятен и подтеков на лицевой поверхности изделия.

4) Не вызывать коррозии рабочей поверхности форм.

5) Не создавать антисанитарных условий в цехах и быть пожаробезопасной.

6) Технология приготовления смазки должна быть простой, позволяющей механизировать процессы ее нанесения.

13.3. Виды смазок.

Смазки, которые применяются на заводах железобетонных изделий можно разделить на три группы.

Таблица 4

Виды смазок

СМАЗКИ

Водные и водно-масляные суспензии

Водно-масляные и водно-мыльно-керосиновые эмульсии

Машинные масла, нефтепродукты и их смеси

Водные растворы минеральных веществ (тонкодисперсных)

Известковая

Меловая

Глиняная

Шламовая

Такие смазки просты в приготовлении и имеют низкую стоимость, но не всегда дают хорошие результаты при распалубке изделий.

Коллоидные системы, состоящие из двух малорастворимых друг в друге жидкостей

Обратные.

Прямые эмульсии

(«масло в воде»):

Эмульсол ЭКС в количестве 10л на 100л смазки; вода мягкая = 90л, сода кальцинированная = 0,7кг.

Обратные эмульсии ОЭ – 2

(«вода в масле») – более водостойкие и вязкие:

20л ЭКС на 100л

Водный раствор (насыщенный извести):

1г извести на 1л воды = 53л

Вода =27л

Керосин

Петролатум

Машинные масла

Соляровое масло, солидол и зола 1:0,5:1,3 по массе

Соляровое масло, солидол и автол 1:1:1

Парафино-керосиновая смазка 1:3

Применение таких смазок ограничено их высокой стоимостью.

13.4. Способы нанесения смазок.

1) Ручное нанесение.

2) Механизированное нанесение – при помощи удочки или распылителей.

Сущность изобретения: консистентную смазку наносят на поверхность под действием центробежных сил, действующих на частицы смазки при вращении их ротором. На роторе по винтовым линиям закреплены стержни через щель корпуса, внутри которого вращается ротор. 3 ил.

Изобретение относится к нанесению жидких, полужидких, пастообразных или порошковых материалов на поверхности. В настоящее время известны следующие способы нанесения консистентных смазок: механическое размазывание, выдавливание с последующим размазыванием, окунание в разогретую смазку, пневматическое или механическое распыление разогретой консистентной смазки. Механическое размазывание требует предварительной подготовки смазки до необходимой пластичности, специальных устройств для подачи смазки к месту ее нанесения. Выдавливание с последующим размазыванием так же требует предварительной подготовки смазки до необходимой пластичности. При выдавливании пластичность смазки уменьшается. Окунание в разогретую смазку требует специальной подготовки консистентной смазки с изменением ее агрегатного состояния - в результате значительная энергоемкость. Способ не является экологически чистым, так как при нагреве консистентных смазок выделяются легкие фракции, вредно воздействующие на окружающую среду. Пневматическое или механическое распыление разогретой консистентной смазки так же требует специальной подготовки консистентной смазки с изменением ее агрегатного состояния. Способ имеет значительную энергоемкость и не является экологически чистым. Этот способ имеет потери (до 15%) смазки на туманообразование. Наиболее близким техническим решением является способ нанесения жидких лакокрасочных материалов на внутреннюю поверхность системами центробежного распыления. При этом способе краска подается на распыляемую головку (диск, конус), устанавливаемую по центру внутренней полости изделия и вращающуюся с высокой окружной скоростью. За счет действия центробежных сил краска растягивается в пленку, перемещающуюся по направлению к кромке диска и сбрасывается с нее. При этом пленка разрывается на отдельные капли, разлетающиеся по траектории, совпадающей с касательными к кромке. Диспергированная краска образует симметричный круговой факел, который по мере удаления от центра головки увеличивается по ширине. Однако, известный способ имеет следующие недостатки. Этот способ может быть применен для нанесения разогретой консистентной смазки со всеми вытекающими отсюда недостатками: значительная электроемкость, вредное воздействие на окружающую среду, потери смазки (до 12%) на туманообразование. Этот способ не может быть применен без принципиальных изменений для механического нанесения консистентной смазки без ее разогрева, т. е. без изменения ее агрегатного состояния. Целью предложенного способа является повышение производительности нанесения консистентной смазки путем механического, без изменения агрегатного состояния консистентной смазки, нанесения ее на поверхность с одновременным перемешиванием, улучшением пластичности и перемещением к месту нанесения. Поставленная цель достигается тем, что смазка наносится ротором с закрепленными на нем по винтовым линиям стержнями. Ротор вращается внутри корпуса, перемешивает и перемещает консистентную смазку от загрузочного окна до щели корпуса, через которую смазка под действием центробежных сил выбрасывается на участок поверхности, который будет против щели. Для нанесения консистентной смазки на всю поверхность необходимо перемещать щель относительно поверхности или поверхность относительно щели. Плотность нанесения смазки на поверхность зависит от центробежной силы, действующей на частицы смазки (скорости вращения ротора и удельного веса смазки). Толщина наносимого слоя смазки зависит от зазора между смазываемой поверхностью и корпусом. На фиг. 1 изображена схема нанесения консистентной смазки на внутреннюю поверхность вращения; на фиг. 2 - схема нанесения консистентной смазки на наружную поверхность; на фиг. 3 - схема нанесения консистентной смазки на плоскую поверхность. Способ центробежного нанесения консистентных смазок испытывался на Южнотрубном заводе г. Никополя для нанесения герметизирующей и консервирующей консистентной смазки на внутреннюю поверхность муфты d у = 146 мм. В соответствии с фиг. 1 через окно загрузки консистентная смазка подается внутрь корпуса 3 к вращающемуся от эл. двигателя ротору 1. Стержни 2, закрепленные на роторе 1 по винтовым линиям, перемешивают смазку, делают ее более пластичной и одновременно перемещают от окна загрузки до щели Щ корпуса. Под действием центробежной силы консистентная смазка выбрасывается через щель Щ корпуса 3 на участок внутренней поверхности муфты. Для нанесения смазки на всю внутреннюю поверхность муфта делает один оборот. Технико-экономическая эффективность. Использование предлагаемого способа нанесения консистентной смазки на поверхности обеспечивает по сравнению с существующими способами следующие преимущества:

1. Совмещение процессов перемещения смазки к месту нанесения, перемешивания и нанесения ее на поверхность. 2. Улучшение технологических свойств смазки при ее нанесении на поверхность, так как при нанесении смазки происходит ее интенсивное перемешивание и, следовательно, смазка становится пластичнее. 3. Меньшая энергоемкость, так как отсутствует разжижение смазки разогревом. 4. Возможность нанесения на поверхности герметизирующих смазок с волокнистыми наполнителями. 5. Возможность нанесения консистентных смазок или покрытий, не допускающих их разогрева. 6. Отсутствие потерь консистентной смазки. (56) Гоц В. Л. Техника окраски внутренних поверхностей, М. : Машиностроение, 1971, с. 37.

ФОРМУЛА ИЗОБРЕТЕНИЯ

СПОСОБ ЦЕНТРОБЕЖНОГО НАНЕСЕНИЯ КОНСИСТЕНТНЫХ СМАЗОК НА ПОВЕРХНОСТИ, при котором консистентная смазка наносится на поверхности под действием центробежных сил, действующих на частицы смазки при вращении их ротором, отличающийся тем, что, с целью повышения производительности процесса нанесения консистентной смазки без изменения ее агрегатного состояния, нанесение ее на поверхность осуществляется вращающимся ротором с закрепленными на нем по винтовым линиям стержнями через щель корпуса, в котором вращается ротор.

Карты смазки и способы смазки


Карты смазки. В каждой инструкции по эксплуатации башенного крана имеется карта смазки крана, включающая схему крана.

На схеме указываются смазываемые точки и их номера; в карте приводятся номера смазываемых точек, наименование механизма или детали, подлежащих смазке, способ смазки, режим и количество смазки в смену на каждую смазываемую деталь, наименование смазки и расход ее в течение года. В табл. 23 приведена часть карты смазки крана БКСМ-3.

При эксплуатации башенного крана следует строго придерживаться указаний, содержащихся в карте смазки. Несвоевременная смазка приводит к быстрому износу машины и повышенному расходу энергии. Обильная смазка так же вредна, как и недостаточная.

Новый кран следует смазывать обильнее, чем кран, бывший в работе. Так, например, масленки, заправляемые обычно одич раз в сутки, в первые 10-15 дней следует заправлять два раза в смену.

Спустя 10-15 дней следует перейти на обычный режим смазки, указанный в карте смазки.

Способы смазки. При смазке механизма необходимо принимать меры, предотвращающие попадание в смазочные материалы посторонних загрязняющих примесей. Пыль, песок и другие вредные примеси, попадая между трущимися деталями, вызывают быстрый износ деталей, что ухудшает их эксплуатацию и приводит к преждевременному ремонту.

Смазку наносят на трущиеся поверхности различными способами. Жидкую смазку подают посредством масленок (рис. 197, а, б, в, г) и колец (рис. 197, д), непрерывно по фитилям или каплями из бачка (рис. 197, е) через определенные промежутки времени (фитильная и капельная смазка), под давлением от насоса особого устройства (рис. 197, ж) или заливают в корпус редуктора (рис. 197,з).

Густую смазку подают под давлением с помощью шприца (рис. 197, и), намазывают на открытые передачи или вручную набивают в корпусы подшипников лопаточками.

Таблица 23



Рис. 197. Способы нанесения смазки на трущиеся поверхности

Таблица 24



При смазке следует руководствоваться следующими основными правилами.
1. Перед нанесением новой смазки очищать смазываемую де^ таль от грязи и старой смазки и промывать керосином, после чего насухо вытирать.
2. При подаче густой смазки под давлением проверять, дошла ли смазка до трущихся поверхностей; при этом сначала под давлением должно выходить старое масло темного цвета, а потом новое - светлого цвета. Если этого не наблюдается, необходимо прочистить весь маслопровод от грязи и старой смазки.
3. Проверять качество смазочного материала на отсутствие воды и других примесей. Консистентные мази, кроме того, не должны содержать комков и посторонних примесей, что проверяется растиранием смазки на пальцах. Жидкие масла перед употреблением желательно профильтровать.
4. Хранить смазочные материалы в закрытой чистой посуде отдельно по видам и сортам.
5. Не производить смазку на ходу машины.
6. Экономно использовать смазочные материалы и не расходовать их сверх установленной нормы.

Для стальных канатов применяют мази или их заменители, приведенные в табл. 25.

Таблица 25

Стальные канаты имеют пеньковую сердцевину, пропитанную. смазкой, которая и является постоянным источником смазки прядей каната. Кроме того, необходима дополнительная регулярная смазка канатов.

При приготовлении мазей составы, подлежащие смешиванию, подогревают до 60°.

Канаты смазывают перед первоначальной установкой их на кран, а также всякий раз при новом монтаже крана. Лучший способ смазки каната - погружение его перед установкой на сутки в бак с минеральным маслом.

Для покрытия 1 пог. м каната диаметром от 8 до 21 мм требуется 30-40 г мази (указанных выше составов). При покрытии смазкой новых, не бывших в употреблении канатов норма расхода марки увеличивается на 50%. Смазку канатов можно производить вручную с помощью пропитанных мазью концов или тряпок или механически, пропуская канаты через ванну, наполненную мазью. Конструкции приспособлений для этой цели приведены на рис. 198.
При набивке подшипников смазку закладывают на 2/3 емкости корпуса.