» » Миниатюрные линейные пьезоэлектрические двигатели. Успешное окончание выдачи литературы

Миниатюрные линейные пьезоэлектрические двигатели. Успешное окончание выдачи литературы

Интересно, что до сих пор не задумывался, как работает автофокус в камере.

Оказывается, там под основным полупрозрачным зеркалом (толстая чёрная линия под 45 градусов на картинке), которое отводит часть света на видоискатель (8), есть ещё одно "вспомогательное" полупрозрачное зеркало (3), забирающее часть света, идущего на матрицу (4), на нужды сенсора автофокуса (7):

Сенсор автофокуса имеет несколько "зон" ("зоны автофокуса", которые соответствуют определённым местам в кадре), над каждой из которых расположена маленькая линза. У каждой "зоны автофокуса" под линзой есть два маленьких сенсора: условно "левый", принимающий только "левую" сторону света, пришедшего из объектива, и условно "правый", принимающий только "правую" сторону света, пришедшего из объектива.

Изображение на этих двух маленьких сенсорах будет совпадать, если объектив сфокусирован правильно (другими словами, если "красный" луч света на картинке попадает точно в центр "красного" сенсора, и "зелёный" луч света на картинке попадает точно в центр "зелёного" сенсора, то изображение на этих двух маленьких сенсорах будет совпадать, объектив сфокусирован правильно).

Алгоритм автоматического поиска фокуса работает так (случаи пронумерованы как на картинке):

1. Линза объектива выдвинута слишком близко. Фотоаппарат может это угадать, заметив, что картина распределения интенсивностей такая же, как если бы она состояла из двух одинаковых картин интенсивностей, сдвинутых друг относительно друга (это можно сразу засечь, чуть-чуть сдвинув фокусировочную линзу объектива; алгоритм угадывания выполняется на процессоре фотоаппарата).

2. Объектив сфокусирован точно - две одинаковые световые картины максимально наложились друг на друга.

3. Линза объектива выдвинута слишком далеко.

4. Вообще не в фокусе.

Для того, чтобы этот алгоритм давал верные результаты, очевидно, требуется, чтобы сенсор автофокуса и матрица были равноудалены от "вспомогательного" полупрозрачного зеркала.

А ещё сейчас в моде объективы с "ультразвуковым мотором".
Звучит-то как!
Прямо как "лазерный принтер"...
Наверняка в 90-ых, услышав в первый раз о таких принтерах, первое, что каждый себе представлял — это как принтер выжигает на бумаге изображение разноцветными лазерами из фантастических фильмов...

Оказалось, что, как и ожидалось, маркетологи всех снова обманули, и мотор никакой не ультразвуковой (не крутится с ультразвуковой скоростью).
Тем не менее, конструкция очень остроумная.

Ультразвуковой двигатель объектива состоит из двух колец: ротора (синий) сверху и статора (красный) снизу.
В свою очередь, статор (красный) состоит из тонкого пьезоэлектрического керамического кольца снизу и толстого (но "эластичного") зубчатого слоя сверху.

Когда на статор (красный) подаётся ток ультразвуковой частоты, в нём возникает резонанс (стоячая волна), и волна эта начинает по кругу путешествовать по статору (красный):


При этом, обратите внимание на то, что статор (красный) стоит не месте и никуда не крутится — он просто "волнуется", как море.
А вот ротор (синий) уже как раз крутится.
Спрашиваете, почему?

А из этой картинки и не поймёте.

Крутится ротор потому что на статоре есть зубцы.
Они очень мелкие (порядка 0,001 мм), и их очень много.

Работают они так, как показано на рисунке: когда под зубец подходит волна, он отклоняется на некоторый угол в сторону движения этой волны, и пока волна проходит под ним, он сначала выравнивается вертикально, а потом наклоняется в уже другую сторону (когда волна уходит из-под него).
Получается, что каждый зубец описывает дугу, и именно это создаёт вращение ротора.

Самые массовые китовые объективы 18-55 у кэнона, никона, сони и других.
С этих объективов все начинают.
И потом они ломаются. Ломаются, когда уже приходит пора переходить на более продвинутые.
Они и сделаны на год не больше и то, если бережно к ним относиться.
Даже прибережном отношении со временем пластиковые детали начинают затирать.
Прилагается больше усилий, направляющие гнутся и зум ломается.
У меня об этом есть в постах по ремонту механики.
Этот пост про ремонт ультразвукового мотора, который просто изнашивается со временем.

Как извлечь мотор, я не пишу, нет ничего проще.

В моторе нечему ломаться, три детали.

Для усложнения задачи сломаем шлейф.

Ремонтируется прсто, всего три провода, средний земля.
И немного о работе самого двигателя, может, кто не знает.
На металлическое кольцо с ножками наклеены пъезопластины.
Когда к ним подается напряжение с частотой резонанса детали,это статор, он начинает колебаться.
Частота примерно 30 кГц, поэтому ультразвуковой мотор.
Ножки толкают ротор и происходит фокусировка.

Плата мотора выглядит так. DC-DC блок питания и 2 фазоинвертора, три провода к мотору.

Для сравнения просто электромотор не ультразвуковой, у кэнона выглядит так.

Разводка USM мотора имеет ещё один немаловажный контакт.
Это четвёртый контакт подстройки частоты блока питания.
Дело в том, что резонансная частота статора меняется в зависимости от температуры.
Если частота питания отличается от резонансной частоты, двигатель работает медленнее.
Нужно сказать, что с подстройкой частоты заморачивается только кэнон, сигма не особо.

Три контакта у сигмы.


Это кэноновский в процессе ремонта, 4 провода.

По большому счёту при сборке объектива на заводе частота блока питания должна подстраиваться до резонансной частоты статора.
В таком случае тупая замена мотора при ремонте невозможна. Нужно подстраивать частоту.

Вернемся к нашему мотору.
Поверхность статора очень чувствительна ко всяким инородным предметам, типа песчинок и нужна хорошая чистота поверхности ножек.
На работу двигателя влияет чистота поверхности и усилие прижимной пружины.
Будем считать, что усилие пружины не изменяется со временем, а вот поверхность истирается.
Я пробую шлифовать поверхность несколькими способами.
Для начала наждачкой 2500, результат плохой.
Ротор сразу нарабатывает задиры и двигатель клинит.
Пробую шлифовать в зеркало на войлочном круге.

Поверхность красивая, но ротор, как бы прилипает, пищит и двигатель плохо вращается.

Последний способ и самый результативный шлифовка с пастой гои на зеркале.

Оказалось важно даже не чистота поверхности а её плоскостность.

Нет предела совершенству.

Шлейф меняется просто

Провода напаиваются и покрываются поксиполом.

Здесь одна тонкость, прижим деталей усиливается за счёт увеличения толщины статора и двигатель может не пойти.
Лишний клей убираем.

Пружину можно укоротить, но тогда прижим будет совсем непонятный.
В сборе, как то так.

И испытания.

Отдельно двигатель вращается.

С редуктором вращается


Тубус объектива вращает


Это для общего развития замер напряжения на двигателе.
Пиковое напряжение доходит до 19 вольт, бъет чувствительно.

А знаете как проверить работает ли статор отдельно?
Погрузить его в воду и получите фонтан. Я не снял, а сейчас уже лень разбирать двигатель.

Да и ещё, эти двигатели не ремонтопригодны их просто меняют.
Причем, если заменить на донорский с поломанного объектива, неизвестно сколько он проработает.

Успехов в фотографии.

Пьезодвигатели бывают с пьезоэлектрически активным статором и пассивным ротором, активным ротором и пассивным статором, активными статором и ротором. В них могут быть возбуждены колебания сжатия-растяжения, изгиба, сдвига, крутильные и радиальные; возможно сочетание колебаний двух типов. Все это приводит к большому разнообразию теоретически возможных конструкций двигателей. Ниже рассмотрены конструкция и принцип действия двух характерных и получивших практическое применение типов двигателей.

Принцип действия вращающегося пьезодвигателя удобно рассмотреть на примере конструктивной схемы двигателя с пьезоэлементом, совершающим продольные и изгибные колебания (рис.6.2). На активном статоре 1 установлен пьезоэлемент, представляющий собой керамическую пластину 3 с помещенными на её боковых поверхностях электродами 4. Один конец керамической пластины закреплен в статоре с помощью эластичной прокладки 2, изготовленной из фторопласта или резины и обеспечивающей акустическую изоляцию осциллятора от статора. На другом конце пластины, обращенном к ротору, установлена износостойкая прокладка 8. Пассивный ротор 9 выполнен в виде гладкого цилиндра из стали или твердых сплавов. Вал ротора 10 закреплен в подшипниках 11. Вибратор прижимается к ротору в поперечном направлении стальной пружиной 5, усилие регулируется винтом 6, упирающимся в эластичную прокладку 7.

Электроды вибратора расположены таким образом, что при подаче на них напряжения переменного тока требуемой частоты, близкой к резонансной частоте продольных колебаний вибратора, пластина вибратора совершает продольные колебания. При продольном смещении свободного конца пластины в сторону ротора пластина давит на ротор в точке А и заставляет его поворачиваться с угловой скоростью ω р. Контактная точка А перемещается вместе с поверхностью ротора, т. е. смещается и в поперечном направлении. Поперечная составляющая силы, действующей на вибратор в зоне контакта, возбуждает изгибные колебания вибратора. При обратном продольном смещении пластины её конец отходит от ротора, и ротор движется по инерции. В результате установившихся продольных и изгибных колебаний происходит устойчивое преобразование электрической энергии, потребляемой вибратором, в механическую энергию вращения ротора.

Следует отметить, что у двигателей рассматриваемого типа в контактной точке происходит фактически соударение двух поверхностей, поэтому их иногда называют пьезодвигателями ударного типа. Двигатель, представленный на рис. 6.2, является нереверсивным, однако при определенном усложнении конструкции возможно создание реверсивного двигателя.

Угловая скорость ротора ω р может быть определена через линейную скорость ротора ν р и его диаметр D р по формуле ω р =ν р /(D р /2).

Линейная скорость ротора зависит от амплитуды и частоты смещения свободного конца вибратора. При увеличении напряжения питания двигателя в довольно широком диапазоне возрастает амплитуда смещения вибратора, соответственно увеличивается линейная и угловая скорость ротора. Максимум амплитуды смещения ограничивается пределом прочности материала пьезоэлемента или его перегревом.

Выполняя двигатели с ротором большого диаметра D р, можно получать низкую частоту вращения ротора ω р без применения механических редукторов при сохранении достаточно высокой мощности на валу на единицу массы.

У современных двигателей номинальное напряжение питания лежит в диапазоне от десятков вольт до 400 вольт; регулирование напряжения позволяет получать частоты вращения в диапазоне от 20 до 10.000 об/мин. Частота напряжения питания обычно выбирается из условия резонанса колебаний; у современных вращающихся двигателей номинальная частота порядка 50-80 кГц.

Двигатель аналогичной конструкции может работать и в шаговом режиме при рабочей частоте вращения 0,2-6 об/сек. При подаче одиночного импульса на обкладки пьезоэлемента выполняется дискретный шаг порядка 0,1– 4 угловых секунд.

Конструктивная схема двигателя второго типа с активным статором, совершающим радиальные колебания, представлена на рис.6.3.

Внешний пассивный ротор 1 выполнен в виде тонкостенного цилиндра. Внутри него находится кольцевой цилиндричесий статорный пьезоэлемент 2, на торцевых поверхностях которого нанесены электроды, а внутренняя поверхность покрыта акустически изолирующим материалом. По внешней образующей статора закреплены упругие стальные пластины – толкатели 3, установленные под определенным углом к внутренней поверхности ротора и прижатые к нему с некоторым усилием.

Если внешний диаметр пьезоэлемента значительно больше его толщины и высоты, то при подаче переменного напряжения на торцевые электроды внешняя поверхность пьезоэлемента начинает совершать радиальные колебания. При положительной полуволне сигнала диаметр статора увеличивается и толкатели, увеличивая нажатие на ротор, поворачивают его на некоторый угол. Отрицательная полуволна сигнала вызывает уменьшение диаметра статора, и толкатели проскальзывают по внутренней стороне поворачивающегося ротора.

Рассмотренный пьезодвигатель является нереверсивным. Однако совмещение в одном корпусе двух таких комплектов с разворотом толкателей в противоположные стороны позволяет получить реверсивный двигатель. В таблице 6.1 приведены технические данные таких двигателей, выпущенных в виде опытной серии.

Таблица 6.1

Области применения миниатюрных двигателей и приводов довольно обширны - это и приводы для измерительных устройств, таких как электронные и туннельные микроскопы, приводы манипуляторов различных сборочных роботов, а также исполнительные механизмы в технологическом оборудовании и бытовой технике. В качестве микромоторов могут использоваться коллекторные и бесколлекторные электромагнитные микродвигатели, пьезомоторы и интегральные приводы MEMS. В статье пойдет речь о пьезоэлектрических двигателях.

Взависимости от степени миниатюризации используются различные типы микромоторов. Для макроуровня, где требуется большая мощность при относительно малых размерах, применяются миниатюрные электромагнитные двигатели и соленоиды. Для микроустройств в настоящее время широко используются интегральные приводы, созданные по MEMS-технологии.

Пьезоприводы проигрывают электромагнитным двигателям по мощности, а MEMS микромоторам - по степени микроминиатюризации. Однако основное преимущество микропьезомоторов - возможность прямого позиционирования с субмикронной точностью. Кроме того, эти приводы имеют и множество других преимуществ перед своими электромагнитными конкурентами.

Электромагнитные микроэлектродвигатели (коллекторные, шаговые и бесколлекторные) в настоящее время достигли предела миниатюризации. Например, серийно выпускаемый шаговый электродвигатель типа А0820 имеет диаметр 8 мм, весит 3,3 грамма и стоит около $10. Двигатели этого типа довольно сложны и содержат сотни деталей. При дальнейшем уменьшении размеров усложняется процесс сборки, а также теряется эффективность двигателя. Для намотки катушек статора приходится использовать более тонкий провод, который имеет более высокое сопротивление. Так, при уменьшении размеров коллекторного микроэлектродвигателя до 6 мм гораздо большая часть подводимой электрической энергии преобразуется в тепло, нежели в механическую энергию. В большинстве случаев для получения линейных приводов на базе электродвигателей необходимо применение дополнительных механических передач и редукторов, которые преобразуют вращательное движение в поступательное и обеспечивают нужную точность позиционирования. При этом возрастают размеры всего устройства в целом, а значительная часть энергии тратится на преодоление трения в механической передаче. Диаграмма, приведенная на рис. 1, показывает, что при размерах менее 7 мм (диаметр корпуса двигателя) выгоднее применять пьезокерамические двигатели, а не электромагнитные.

Рис. 1. При размерах менее 7 мм пьезоэлектродвигатели более эффективны, чем электромагнитные двигатели

В настоящее время многими фирмами освоено серийное производство пьезомоторов. В статье рассматривается продукция двух производителей пьезоприводов: немецкого Physik Instrumente (PI) и американского New Scale Technologies. Выбор фирм не случаен. Американская фирма на данный момент производит самые маленькие в мире пьезодвигатели, а немецкая является одним из лидеров в секторе пьезоприводов для прецизионного оборудования. Производимые ею пьезомоторы имеют уникальные функциональные характеристики и пользуются заслуженной репутацией среди производителей прецизионного технологического и измерительного оборудования. Обе фирмы используют свои патентованные решения. Принцип работы двигателей обеих фирм, а также их конструкция различны.

Конструкция и принцип работы пьезоэлектродигателя SQUIGGLE

На рис. 2 показаны конструкция и принцип работы пьезопривода SQUIGGLE фирмы New Scale Technologies.

Рис. 2. Конструкция и принцип работы микропривода SQUIGGLE

Основа привода - муфта прямоугольного сечения с внутренней резьбой и ходовой винт (червяк). На гранях металлической муфты смонтированы пьезокерамические пластины актуаторов. При подаче двухфазных сигналов на пары пьезоэлектрических актуаторов создаются вибрационные колебания, которые передаются в массу муфты. Для более эффективного преобразования электрической энергии в механическую актуаторы работают в резонансном режиме. Частота возбуждения зависит от размеров пьезопривода и находится в диапазоне от 40 до 200 кГц. Механические колебания, действующие на границе двух рабочих поверхностей муфты и винта, вызывают появление сил сдавливания с поворотом (типа вращения хула-хупа). Результирующая сила обеспечивает вращение червяка относительно неподвижного основания - муфты. При движении винта и происходит преобразование вращательного движения в линейное перемещение. В зависимости от сдвига фаз управляющих сигналов можно получать вращение винта как по часовой, так и против часовой стрелки.

В качестве материалов винта и муфты используются немагнитные материалы, такие как бронза, нержавеющая сталь, титан. Резьбовая пара муфта–червяк не требует смазки для работы.

Пьезоприводы практически безынерционные, обеспечивают отличную приемистость (движение с ускорением до 10 g), практически бесшумны в звуковом диапазоне (30 Гц - 15 кГц). Точность позиционирования может достигаться без использования датчиков положения - благодаря тому, что движение происходит без проскальзывания (при условии, что нагрузка на рабочий винт находится в рабочих пределах), и перемещение прямо пропорционально числу импульсных сигналов, приложенных к пластинам актуатора. Пьезоприводы имеют практически неограниченный срок службы, разве что со временем за счет износа винтовой передачи может быть частично потеряна точность позиционирования. Пьезопривод может выдерживать режим блокировки движения за счет приложения сил торможения, превосходящих усилие тяги привода. В этом случае будет происходить проскальзывание без разрушения винтовой передачи.

Сегодня микромоторы серии SQL признаны самыми маленькими электродвигателями в мире, которые производятся серийно.

Рис. 3. Рабочий чертеж промышленного пьезомотора серии SQL

Основные характеристики пьезопривода SQUIGGLE:

  • масштабируемые размеры (можно получать заказные приводы с заданными размерами);
  • минимальные габариты привода 1,55×1,55×6 мм;
  • простота конструкции (7 составных частей);
  • низкая цена;
  • высокая технологичность изготовления составных компонентов и сборки привода;
  • прямой линейный привод, не требующий применения дополнительных механических передач;
  • субмикронная точность позиционирования привода;
  • бесшумность работы;
  • широкий рабочий температурный диапазон (–30...+70 °С).

Параметры микромоторов серии SQL:

  • мощность потребления - 500 мВт (только в процессе перемещения штока);
  • разрешение - 0,5 мкм;
  • вес - 1,7 г;
  • скорость перемещения - 5 мм/с (под нагрузкой 100 г);
  • усилие перемещения - более 200 г;
  • частота возбуждения пьезоактуаторов - 116 кГц;
  • электрическая емкость каждой из четырех фаз пьезопривода - 1,35 нФ;
  • коннектор (кабель) - печатный шлейф (6 проводников - 4 фазы и 2 общих);
  • рабочий ресурс - 300 тыс. циклов (при длине хода якоря 5 мм);
  • диапазон линейных перемещений якоря:
  • – модель SQL-3.4 - 10–40 = 30 мм (40 мм - длина ходового винта);

    – модель SQL-3.4 - 10–30 = 20 мм (30 мм - длина ходового винта);

    – модель SQL-3.4 - 10–15 = 5 мм (15 мм - длина ходового винта).

  • крепление привода - фланцевое соединение или опрессовка.

По заказу фирмы New Scale Technologies разработан интегральный драйвер для пьезоприводов серии SQL (рис. 4). Таким образом, потребитель имеет возможность использовать набор готовых компонентов для получения своего OEM электромеханического модуля.

Рис. 4. Серия SQL микропьезоприводов для портативной аппаратуры

Микросхема драйвера привода (рис. 5) содержит преобразователь напряжения и выходные драйверы, работающие на емкостную нагрузку. Входное напряжение 3 В. Уровни выходных напряжений формирователей - до 40 В.

Рис. 5. Микросхема драйвера пьезопривода

Области применения пьезоприводов SQUIGGLE

Привод для объективов фото- и видеокамер

Один из самых больших секторов применения микроэлектроприводов - цифровые фотокамеры и видеокамеры (рис. 6). Микропривод используется в них для управления фокусировкой объектива и оптическим зумом.

Рис. 6. Прототип привода оптического зума для цифровой фотокамеры

На рис. 7 показан пьезопривод SQUIGGLE для применения во встроенных фотокамерах сотовых телефонов. Привод производит смещение двух линз вдоль направляющих вверх–вниз и обеспечивает автофокусировку (длина хода оптики 2 мм) и зум (ход перемещения линз до 8 мм).

Рис. 7. Модель объектива с приводом SQUIGGLE для камеры, встроенной в сотовый телефон

Медицинский шприц-дозатор

Во всем мире насчитывается сотни миллионов людей, нуждающихся в периодических дозированных инъекциях медицинских препаратов. В этом случае следить за временем, дозами, а также проводить процедуру инъекции должен сам пациент. Этот процесс можно значительно упростить и тем самым облегчить жизнь пациента, если создать программируемый шприц-дозатор (рис. 8). На базе пьезопривода SQL уже реализован программируемый насос-шприц для инъекций инсулина. Дозатор состоит из микроконтроллерного модуля управления, емкости с препаратом, шприца и управляемого привода. Управление дозатором осуществляется встроенным микроконтроллерным модулем с батарейным питанием. Элемент питания - литиевая батарея. Модуль дозатора может быть встроен в одежду больного и размещен, например, в области рукава. Временные интервалы между инъекциями и дозы медикамента программируются под конкретного клиента.

Рис. 8. Использование привода в программируемом шприце-дозаторе

Величина дозы прямо пропорциональна длине перемещения штока привода.

Предполагается использование микрошприцев с противошоковым препаратом, вмонтированных в «интеллектальную броню» военнослужащего. Защитная одежда, кроме армированных силовых элементов, содержит также интегрированные датчики пульса, температуры, датчики механических повреждений текстильной «брони». Активация шприцев происходит как по инициативе самого бойца, так и по команде из блока носимой электроники или же по радиоканалу из командного терминала на основании показаний датчиков при потере бойцом сознания, например, после ранения или в результате контузии.

Немагнитные двигатели

Поскольку в пьезоприводах SQL не используются ферросплавные материалы, а также электромагнитные поля, двигатели этого типа могут использоваться для создания носимых медицинских диагностических устройств, совместимых с методом магниторезонасной томографии. Данные приводы также не будут вносить помехи при размещении в рабочих зонах оборудования, использующего ядерный магнитный резонанс, а также вблизи электронных сканирующих микроскопов, микроскопов с фокусированием ионных потоков и т. п.

Лабораторный микронасос

На базе пьезопривода могут быть созданы микронасосы для дозированной подачи жидкостей в лабораторном исследовательском оборудовании. Основные достоинства микронасоса такой конструкции - высокая точность дозирования и надежность работы.

Двигатель для вакуумного оборудования

Пьезопривод подходит для создания механических устройств, работающих в условиях как высокого, так и сверхвысокого вакуума, и обеспечивающих высокую точность позиционирования (рис. 9). Материалы привода обладают малым газовыделением в вакууме. При работе привода в режиме микроперемещений выделяется мало тепла.

Рис. 9. Привод для вакуумного оборудования на базе микромотора серии SQL

В частности, такие двигатели найдут широкое применение при создании новых поколений сканирующих электронных микроскопов, ионных сканирующих масс-спектрометров, а также в технологическом и тестирующем оборудовании для электронной промышленности, в оборудовании, применяемом в ускорителях частиц, таких как синхротроны.

Приводы для криогенного оборудования

Уникальные параметры пьезопривода позволяют использовать его при очень низких температурах. Фирмой уже выпускаются варианты исполнений приводов для коммерческих и космических применений при низких температурах.

В настоящее время на базе микромоторов SQL созданы приводы для различных функциональных узлов в криогенном лабораторном оборудовании, а также механические приводы для подстройки параметров космических телескопов.

На рис. 10 показан пьезопривод для работы при температурах жидкого гелия.

Рис. 10. Исполнение пьезопривода для работы при температурах от комнатной до 4 К (жидкий гелий)

Работа при низких температурах требует других частот и амплитуд сигналов для возбуждения пьезоактуаторов.

Оценочный набор

Фирма New Scale Technologies выпускает оценочный набор, который содержит: пьезодвигатель SQL (рис. 11), плату привода, программное обеспечение, интерфейс с компьютером, а также дополнительный пользовательский пульт управления приводом.

Рис. 11. Оценочный набор для пьезопривода SQL

В качестве интерфейса с ПК может использоваться USB или RS-232.

Пьезоприводы фирмы PI

Немецкая фирма Physik Instrumente (PI) (www.physikinstrumente.com/en) была образована в 1970 году. В настоящее время имеет подразделения в США, Великобритании, Японии, Китае, Италии и Франции. Основной сектор - оборудование для нанопозиционирования и обеспечения контроля движения с высокой точностью. Фирма является одним из ведущих производителей оборудования данного профиля. Используются уникальные запатентованные решения. Так, в отличие от большинства пьезоприводов, в том числе и SQUIGGLE, в приводах PI обеспечивается принудительная фиксация каретки после останова. За счет отсутствия смещения эти устройства обладают высокой точностью позиционирования.

Конструкция и принцип работы пьезприводов PI

На рис. 12 показана конструкция пьезодвигателя фирмы PI.

PILine - патентованная конструкция пьезопривода, разработанная фирмой PI. Сердцем системы является прямоугольная монолитная керамическая плата - статор, которая разделена с одной стороны на два электрода. В зависимости от направления движения, левый или правый электрод керамической платы возбуждается импульсами с частотой в десятки и сотни килогерц. Алюминиевый фрикционный наконечник (толкатель) прикреплен к керамической плате. Он обеспечивает передачу движения от колеблющейся пластины статора к фрикциону каретки. Материал фрикционной полоски обеспечивает оптимальную силу трения при работе в паре с алюминиевым наконечником.

Благодаря контакту с полоской фрикциона обеспечивается сдвиг подвижной части привода (каретки, платформы, поворотного столика микроскопа) вперед или назад. С каждым периодом колебаний керамического статора выполняется сдвиг каретки на несколько нанометров. Движущая сила возникает из продольных колебаний пластины актуатора. В настоящее время ультразвуковые пьезоприводы могут обеспечивать движение с ускорением до 20 g и скорость движения до 800 мм/с! Усилие привода пьезодвигателя может достигать 50 Н. Приводы PILine могут работать без обратной связи и обеспечивать разрешение 50 нм.

На рис. 13 показана конструкция пьезокерамического статора PILine.

Рис. 13. Конструкция керамического статора пьезопривода PILine

При отсутствии сигнала наконечник толкателя прижат к полоске фрикциона и сила трения, действующая на границе между наконечником и фрикционом, обеспечивает фиксацию каретки.

PILine - серия пьезоприводов с линейным перемещением

Фирма PI выпускает серию линейных пьезоприводов по технологии PILine с различными функциональными параметрами. В качестве примера рассмотрим характеристики конкретной модели P-652 (рис. 14).

Рис. 14. Вариант реализации пьезопривода PILine P-652 (рядом для сравнения мяч для гольфа)

Пьезопривод PILine P-652 может использоваться в OEM приложениях, для которых важны малые габариты и масса. Модуль привода P-652 может заменить классический привод на основе двигателя с вращающимся валом и механической передачей, а также другие линейные электромагнитные приводы. Самофиксация каретки при останове не требует дополнительной энергии. Привод предназначен для перемещения малых объектов с высокой скоростью и точностью.

Компактный пьезомотор с интегрированной схемой управления может обеспечивать движение с ускорением до 2,5 g и скоростью до 80 мм/с. При этом выдерживается высокая точность позиционирования каретки и достаточно высокий уровень силы фиксации в неподвижном состоянии. Наличие фиксации каретки обеспечивает возможность работы привода в любых положениях и гарантирует фиксацию положения каретки после останова даже под действием нагрузки. В схеме драйвера для возбуждения пьезоактуаторов используются короткие импульсы амплитудой всего 3 В. Схема обеспечивает автоподстройку резонансного режима под конкретные размеры керамических актуаторов.

Основные характеристики линейного пьезомотора P-652 PILine:

  • низкая стоимость серийного производства;
  • размер пьезомотора - 9,0×6,5×2,4 мм;
  • рабочий ход перемещения каретки 3,2 мм;
  • скорость движения до 80 мм/с;
  • самофиксация при останове;
  • MTBF - 20 тыс. часов.

Модули приводов со встроенным контроллером

Фирма PI производит модули управления (контроллеры) для своих пьезоприводов. Плата управления содержит интерфейс управления, преобразователь напряжения и выходной драйвер для возбуждения пьезокерамического актуатора. В контроллерах приводов используется традиционная схема пропорционального управления. В зависимости от условий применения приводов в контроллере может использоваться цифровой или аналоговый тип пропорционального управления. Для управления самими актуаторами применяются синусоидальные сигналы, а также может использоваться обратная связь по датчикам положения. Фирма PI выпускает готовые модули с датчиками положения. Фирма PI разработала и производит емкостные датчики положений для своих интегральных модулей (рис. 15).

Рис. 15. Модуль пьезопривода со встроенной платой управления

Цифровой (импульсный) режим управления

Импульсный режим управления движением подходит для приложений, требующих малых перемещений с большой скоростью, таких как микроскопия или автоматика. Двигатель управляется 5-вольтовыми TTL-импульсами. Ширина импульса определяет длину шага двигателя. Шаг перемещения в таком режиме - до 50 нм. Для реализации одного такого шага подается импульс напряжения длительностью около 10 мкс. Длительность и скважность импульсов управления зависит от скорости движения и величины выполняемого перемещения каретки.

Режим аналогового управления

В данном режиме в качестве входных сигналов управления положением используются аналоговые сигналы амплитудой ±10 В. Величина перемещения каретки в этом случае прямо пропорциональна амплитуде управляющего сигнала.

Области применения прецизионных пьезоприводов:

  • биотехнологии;
  • микроманипуляторы;
  • микроскопия;
  • лабораторное оборудование контроля качества;
  • тестовое оборудование для полупроводниковой промышленности;
  • метрология;
  • тестирование дисковых накопительных устройств;
  • НИР и ОКР.

Преимущества ультразвуковых пьезодвигателей PILine:

  • Малые габариты . Например, модель M-662 обеспечивает рабочий ход 20 мм при габаритах корпуса 28×28×8 мм.
  • Малая инерция . За счет этого достигается перемещение с большими скоростями, высокими ускорениями и сохраняется высокое разрешение. PILine обеспечивает скорости движения до 800 мм/с и ускорение до 20 g. Жесткость конструкции обеспечивает очень малое время продвижения за один шаг и высокую точность позиционирования - 50 нм.
  • Отличный показатель удельной мощности . Привод PILine обеспечивает высокие характеристики в минимальных габаритах. Никакой другой двигатель не может обеспечить такую же комбинацию ускорений, скоростей и точности.
  • Безопасность . Минимальный момент инерции наряду с фрикционной муфтой обеспечивает безопасность при работе. Такой привод не может разрушиться и повредить окружающие предметы в результате нарушения режима работы. Использование фрикционной муфты предпочтительнее, чем червячная передача в двигателе SQUIGGLE. Несмотря на большие скорости перемещения каретки, риск повреждения, например, пальца оператора гораздо меньше, чем при использовании любого другого привода. Это означает, что пользователь может прикладывать меньше усилий, чтобы обеспечить безопасность работы привода.
  • Автофиксация каретки .
  • Возможность работы привода в вакууме .
  • Незначительный уровень ЭМИ . Приводы PILine при работе не создают магнитных полей и не имеют в конструкции ферромагнитных материалов.
  • Гибкость решений для OEM . Приводы PILine могут поставляться как с датчиками, так и без датчиков положения. Кроме того, могут поставляться и отдельные компоненты привода.

Линейные пьезоприводы типа NEXLINE

Пьезоприводы NEXLINE обеспечивают более высокую точность позиционирования. Конструкция привода содержит несколько актуаторов, работающих согласованно. В отличие от приводов PILine, в этих устройствах актуаторы работают не в резонансном режиме. В этом случае получается многотактная схема перемещения подвижной каретки несколькими толкателями актуаторов. Тем самым не только повышается точность позиционирования, но и увеличиваются моменты сил движения и удержания каретки. Приводы этого типа, так же как и приводы PILine, могут поставляться как с датчиками положения каретки, так и без них.

Основные преимущества серии пьезоприводов NEXLINE:

  • Очень высокое разрешение, ограниченное только чувствительностью датчиков положения. В режиме аналогового перемещения с использованием датчиков положения достигается точность позиционирования 50 нм (0,05 мкм).
  • Работа с высокой нагрузкой и большой силой фиксации каретки. Приводы NEXLINE могут обеспечивать усилия до 600 Н. Жесткая конструкция и применение резонансных частот возбуждения в диапазоне сотен герц позволяют конструкции подавлять вибрацию от внешних воздействий. Аналоговый режим работы может активно применяться для сглаживания вибрации и дрожания основания привода.
  • Может работать как в режиме с открытым контуром обратной связи, так и с обратной связью по датчикам положения. Цифровой контроллер NEXLINE может использовать сигналы положения от линейных энкодеров или же от лазерных интерферометров, а для очень высокой точности позиционирования использовать сигналы абсолютного положения от емкостных датчиков.
  • Сохраняет стабильное положение каретки при выключении питания.
  • Длительный срок службы - более 10 лет.
  • Привод NEXLINE не содержит ферроманитных деталей, не подвержен действию магнитных полей, не является источником электромагнитного излучения.
  • Устройства работать в очень тяжелых условиях внешней среды. Активные части приводов NEXLINE выполнены из вакуумной керамики. NEXLINE также может работать без нарушений при облучении жестким ультрафиолетом.
  • Очень прочная конструкция. Приводы NEXLINE в процессе транспортировки могут выдерживать удары и вибрации до нескольких g.

Гибкость дизайна для OEM

Приводы NEXLINE выпускаются в трех вариантах интеграции. Пользователь может заказать готовый OEM двигатель, только пьезоактуаторы для двигателя своей конструкции, либо комплексную систему под ключ, например такую, как многоосный поворотный столик или же сборочный микроробот с шестью степенями свободы. На рис. 16–19 показаны различные варианты реализации многокоординатных устройств позиционирования на базе пьезоприводов фирмы PI.

Фирма специализируется на разработке и производстве керамических микроэлектродвигателей для применения в миниатюрных устройствах. Компания New Scale Technologies Inc. (www.NewScaleTech.com) была основана в 2002 году группой специалистов, имеющих десятилетний опыт в области проектирования пьезоэлектрических приводов. Первый коммерческий образец привода SQUIGGLE был создан уже в 2004 году. Созданы специальные исполнения привода для работы в экстремальных условиях, для работы в вакууме, в криогенных установках при сверхнизкой температуре, а также для работы в зоне сильных электромагнитных полей.

За короткое время пьезодвигатели SQUIGGLE нашли широкое применение в лабораторном оборудовании для нанотехнологий, в технологическом оборудовании микроэлектроники, устройствах лазерной техники, медицинском оборудовании, приборах аэрокосмического назначения, установках оборонного назначения, а также в промышленных и бытовых устройствах, например, таких как цифровые камеры и сотовые телефоны.

Подробности Опубликовано 02.10.2019

ЭБС «Лань» информирует о том, что за сентябрь 2019 года обновлены доступные нашему университету тематические коллекции в ЭБС «Лань»:
Инженерно-технические науки - Издательство «Лань» - 20

Надеемся, что новая коллекция литературы будет полезна в учебном процессе.

Тестовый доступ к коллекции «ПожКнига» в ЭБС «Лань»

Подробности Опубликовано 01.10.2019

Уважаемые читатели! C 01.10.2019 г. по 31.10.2019 г. нашему университету предоставлен бесплатный тестовый доступ к новой издательской коллекции в ЭБС «Лань»:
«Инженерно-технические науки» издательства «ПожКнига» .
Издательство «ПожКнига» является самостоятельным подразделением Университета комплексных систем безопасности и инженерного обеспечения (г. Москва). Специализация издательства: подготовка и издание учебно-справочной литературы по пожарной безопасности (безопасность предприятий, нормативно-техническое обеспечение работников системы комплексной безопасности, пожарного надзора, пожарная техника).

Успешное окончание выдачи литературы!

Подробности Опубликовано 26.09.2019

Уважаемые читатели! Мы рады вам сообщить об успешном окончании выдачи литературы студентам первого курса. С 1 октября читальный зал открытого доступа №1 будет работать по обычному графику c 10:00 до 19:00.
С 1 октября студенты, не получившие литературу со своими группами, приглашаются в отделы учебной литературы (помещения 1239, 1248) и отдел социально-экономической литературы (помещение 5512) для получения необходимой литературы в соответствии с установленными правилами пользования библиотекой.
Фотографирование на читательские билеты осуществляется в читальном зале №1 по расписанию: вторник, четверг с 13:00 до 18:30 (перерыв с 15:00 до 16:30).

27 сентября - санитарный день (подписываются обходные листы).

Оформление читательских билетов

Подробности Опубликовано 19.09.2019

Уважаемые студенты и сотрудники университета! 20.09.2019 и 23.09.2019 с 11:00 до 16:00 (перерыв c 14:20 до 14:40) приглашаем всех желающих, в т.ч. студентов первого курса, не успевших сфотографироваться со своими группами, для оформления читательского билета в читальный зал №1 библиотеки (пом. 1201).
С 24.09.2019 возобновляется фотографирование на читательские билеты по обычному графику: вторник и четверг с 13:00 до 18:30 (перерыв с 15:00 до 16:30).

Для оформления читательского билета необходимо при себе иметь: студентам - продлённый студенческий билет, сотрудникам - пропуск в университет или паспорт.