» » Кпд двигателя внешнего сгорания стирлинга. Какие бывают двигатели внешнего сгорания

Кпд двигателя внешнего сгорания стирлинга. Какие бывают двигатели внешнего сгорания

В двигателях внешнего сгорания процесс сжигания топлива и источник теплового воздействия отделены от рабочей установки. К данной категории обычно относят паровые и газовые турбины, а также двигатели Стирлинга. Первые прототипы подобных установок были сконструированы более двух веков назад и применялись на протяжении почти всего XIX столетия.

Когда для бурно развивающейся промышленности понадобились мощные и экономичные энергетические установки, конструкторы придумали замену взрывоопасным паровым двигателям, где рабочим телом был находящийся под большим давлением пар. Так появились двигатели внешнего сгорания, получившие распространение уже в начале XIX столетия. Только через несколько десятков лет им на смену пришли двигатели внутреннего сгорания. Стоили они существенно дешевле, что и их широкое распространение.

Но сегодня конструкторы все пристальнее присматриваются к вышедшим из широкого употребления двигателям внешнего сгорания. Это объясняется их преимуществами. Главное достоинство состоит в том, что такие установки не нуждаются в хорошо очищенном и дорогом топливе.

Двигатели внешнего сгорания неприхотливы, хотя до сих пор их постройка и обслуживание обходятся достаточно дорого.

Двигатель Стирлинга

Один из самых известных представителей семейства двигателей внешнего сгорания – машина Стирлинга. Она была придумана в 1816 году, неоднократно совершенствовалась, но впоследствии на долгое время была незаслуженно забыта. Теперь же двигатель Стирлинга получил второе рождение. Его с успехом используют даже при освоении космического пространства.

Работа машины Стирлинга основана на замкнутом термодинамическом цикле. Периодические процессы сжатия и расширения здесь идут при разных температурах. Управление рабочим потоком происходит посредством изменения его объема.

Двигатель Стирлинга может работать в качестве теплового насоса, генератора давления, устройства для охлаждения.

В данном двигателе при низкой температуре идет сжатие газа, а при высокой – его расширение. Периодическое изменение параметров происходит за счет использования особого поршня, имеющего функцию вытеснителя. Тепло к рабочему телу при этом подводится с внешней стороны, через стенку цилиндра. Эта особенность и дает право

Экология потребления.Наука и техника:Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой и эффективностью.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей - тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

ДВИГАТЕЛЬ СТИРЛИНГА: ФИЗИЧЕСКАЯ СТОРОНА ВОПРОСА

Для понимания, как работает настольная электростанция на Стирлинге, следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт.

Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

СОВРЕМЕННЫЕ КОНФИГУРАЦИИ СТИРЛИНГА

Современная инженерия различает три основных вида подобных двигателей:

  • альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
  • бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
  • гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Настольная электростанция Стирлинга, купить которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

  • большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
  • использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
  • потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
  • резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

  • любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
  • экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПДна 30% выше;
  • экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
  • конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
  • повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.

ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.


Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород. опубликовано

Из прошлого - в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя - стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично - на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

1 - рабочий цилиндр, 2 - поршень; 3 - компрессор; 4 - всасывающий клапан; 5 - нагнетательный клапан; 6 - промежуточный резервуар; 7 - регенератор; 8 - перепускной золотник; 9 - выхлопная труба; 10 - всасывающая труба; 11 -топка.

И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…

Сжатие, нагрев, расширение, охлаждение - вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой - получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу - циклу Карно - должен работать двигатель с самым высоким к.п.д.

Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.

В начале нашего века движки Эриксона небольшой мощности (порядка 10-20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.

Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.

1 - рабочий поршень 2 - поршень-вытеснитель; 3 - охладитель; 4 - нагреватель; 5 - регенератор; 6 - холодное пространство; 7 - горячее пространство.

Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.

Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.

…Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200-400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.

Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный - давно забытый двигатель Стирлинга.

Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие - замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.

Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе - то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6-7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение - 1,5-2 кг на л. с. Они еще более компактны и легки.

Итак, схема стала двухконтурной: один контур с рабочим агентом и второй - подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. - до 38-40 процентов. Для сравнения:современ-

ные дизели имеют к.п.д. 34-38 процентов, а карбюраторные двигатели - 25-28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность - по выходу окиси углерода в 200 раз, по окиси азота - на 1-2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.

Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема - горячая, она непрерывно нагревается. Нижняя - холодная, все время охлаждается водой. В том же объеме - цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз - расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа - рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.

Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.

1 - топливная форсунка; 2 - выхлоп охлажденных газов, 3 - воздухонагреватель; 4 - выход горячих газов; 5 - горячее пространство; 6 - регенератор; 7 - цилиндр; 8 - трубки охладителя; 9 - холодное пространство; 10 - рабочий поршень; 11 - ромбический привод; 12 - камера сгорания; 13 - трубки нагревателя; 14 - поршень-вытеснитель; 15 - впуск воздуха для сжигания топлива; 16 - буферная полость.

Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами - так появляется довольно сложный контур сгорания.

Холодная часть рабочего объема - тоже система трубок, в которые нагнетается охлаждающая вода.

Под рабочим поршнем - замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.

По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. - это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.

Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.

Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.

Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ - и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48-50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.

Еще одна интересная разработка - привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.

Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.

Автомобиль со стирлингом может работать на любом виде.топлива, а при необходимости - на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.

Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.

К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.

Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.

А. АЛЕКСЕЕВ

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Несмотря на свои высокие показатели, современный двигатель внутреннего сгорания начинает устаревать. Его к. п. д. достиг, пожалуй, своего предела. Шум, вибрация, отравляющие воздух газы и другие присущие ему недостатки заставляют ученых искать новые решения, пересматривать возможности давно «забытых» циклов. Одним из «возрожденных» двигателей является стирлинг.

Еще в 1816 г. шотландский священник и ученый Роберт Стирлинг запатентовал двигатель, в котором топливо и воздух, поступающие в зону горения, никогда не попадают внутрь цилиндра. Они, сгорая, лишь нагревают находящийся в нем рабочий газ. Это и дало основание назвать изобретение Стирлинга двигателем внешнего сгорания.

Роберт Стирлинг построил несколько двигателей; последний из них имел мощность 45 л. с. и проработал на шахте в Англии более трех лет (до 1847 г.). Эти двигатели были очень тяжелыми, занимали много места и внешне напоминали паровые машины.

Для мореплавания двигатели внешнего сгорания впервые были применены в 1851 г. шведом Джоном Эриксоном. Построенное им судно «Эриксон» благополучно пересекло Атлантический океан из Америки в Англию с силовой установкой, состоявшей из четырех двигателей внешнего сгорания. В век паровых машин это было сенсацией. Однако силовая установка Эриксона развивала всего 300 л. с., а не 1000, как ожидалось. Двигатели имели огромные размеры (диаметр цилиндра 4,2 м, ход поршня 1,8 м). Расход угля получился не меньше, чем у паровых машин. Когда судно пришло в Англию, оказалось, что двигатели не пригодны для дальнейшей эксплуатации, так как у них прогорели днища цилиндров. Чтобы вернуться в Америку, пришлось заменить двигатели обычной паровой машиной. На обратном пути судно попало в аварию и затонуло со всем экипажем.

Маломощные двигатели внешнего сгорания в конце прошлого века применялись в домах для перекачивания воды, в типографиях, на промышленных предприятиях, в том числе на петербургском заводе Нобеля (ныне «Русский дизель»), Устанавливались они и на мелких судах. Стирлинги выпускались во многих странах, в том числе в России, где они назывались «тепло и сила». Ценили их за бесшумность и безопасность работы, чем они выгодно отличались от паровых машин.

С развитием двигателей внутреннего сгорания о стирлингах забыли. В энциклопедическом словаре Брокгауэа и Эфрона о них написано следующее: «Безопасность от взрывов составляет главную выгодную сторону калорических машин, благодаря которой они могут опять войти в употребление, если найдут для их построения и смазки новые материалы, лучше выдерживающие высокую температуру».

Дело заключалось, однако, не только в отсутствии соответствующих материалов. Еще оставались неизвестными современные принципы термодинамики, в частности эквивалентность тепла и работы, без чего невозможно было определить наивыгоднейшие соотношения основных элементов двигателя. Теплообменники делали с малой поверхностью, из-за чего двигатели работали при непомерно высоких температурах и быстро выходили из строя.

Попытки усовершенствовать Стирлинг были предприняты после второй мировой войны. Наиболее существенные из них заключались в том, что рабочий газ стали применять сжатым до 100 атм и использовать не воздух, а водород, имеющий более высокий коэффициент теплопроводности, низкую вязкость и, кроме того, не окисляющий смазки.

Устройство двигателя внешнего сгорания в его современном виде схематически показано на рис. 1. В закрытом с одной стороны цилиндре находятся два поршня. Верхний - поршень-в ы тесните ль служит для ускорения процесса периодического нагрева и охлаждения рабочего газа. Он представляет собой полый закрытый цилиндр из нержавеющей стали, плохо проводящий тепло, и перемещается под действием штока, связанного с кривошипно-шатунным механизмом.

Нижний поршень - рабочий (на рисунке показан в сечении). Он передает усилие на кривошипно-шатунный механизм через полый шток, внутри которого проходит шток вытеснителя. Рабочий поршень снабжен уплотняющими кольцами.

Под рабочим поршнем имеется буферная емкость, образующая подушку, выполняющую функцию маховика - сглаживать неравномерность крутящего момента благодаря отбору части энергии во время рабочего хода и отдаче ее на вал двигателя во время хода сжатия. Для изоляции объема цилиндра от окружающего пространства служат уплотнения типа «заворачивающийся чулок». Это резиновые трубки, прикрепленные одним концом к штоку, а другим к корпусу.

Верхняя часть цилиндра соприкасается с подогревателем, а нижняя - с холодильником. Соответственно в нем выделяются «горячий» и «холодный» объемы, свободно сообщающиеся между собой посредством трубопровода, в котором находится регенератор (теплообменник). Регенератор заполнен путанкой из проволоки малого диаметра (0,2 мм) и обладает высокой теплоемкостью (например, к. п. д. регенераторов фирмы Филипе превышает 95%).

Рабочий процесс двигателя Стирлинга может быть осуществлен и без вытеснителя, на основе применения золотникового распределителя рабочего заряда.

В нижней части двигателя расположен кривошипно-шатунный механизм, служащий для преобразования возвратно-поступательного движения поршня во вращательное движение вала. Особенностью этого механизма является наличие двух коленчатых валов, соединенных двумя шестернями со спиральными зубьями, вращающимися навстречу друг другу. Шток вытеснителя связан с коленчатыми валами посредством нижнего коромысла и прицепных шатунов. Шток рабочего поршня соединяется с коленчатыми валами через верхнее коромысло и прицепные шатуны. Система одинаковых шатунов образует подвижный деформируемый ромб, откуда и название этой передачи - ромбическая. Ромбическая передача обеспечивает необходимый сдвиг фаз при движении поршней. Она полностью уравновешена, в ней не возникают боковые усилия на штоки поршней.

В пространстве, ограниченном, рабочим поршнем, находится рабочий газ - водород или гелий. Полный объем газа в цилиндре не зависит от положения вытеснителя. Изменения объема, связанные со сжатием и расширением рабочего газа, происходят за счет перемещения рабочего поршня.

При работе двигателя верхняя часть цилиндра постоянно нагревается, например, от камеры сгорания, в которую впрыскивается жидкое топливо. Нижняя часть цилиндра постоянно охлаждается, например, холодной водой, прокачиваемой через водяную рубашку, окружающую цилиндр. Замкнутый цикл Стирлинга состоит из четырех тактов, изображенных на рис. 2.

Такт I - охлаждение . Рабочий поршень находится в крайнем нижнем положении, вытеснитель движется вверх. При этом рабочий газ перетекает из «горячего» объема над вытеснителем в «холодный» объем под ним. Проходя по пути через регенератор, рабочий газ отдает ему часть своего тепла, а затем охлаждается в «холодном» объеме.

Такт II - сжатие . Вытеснитель остается в верхнем положении, рабочий поршень движется вверх, сжимая рабочий газ при низкой температуре.

Такт III - нагревание . Рабочий поршень находится в верхнем положении, вытеснитель движется вниз. При этом сжатый холодный рабочий газ устремляется из-под вытеснителя в освобождающееся пространство над ним. По дороге рабочий газ проходит через регенератор, где предварительно подогревается, попадает в «горячую» полость цилиндра и нагревается еще сильнее.

Такт IV - расширение (рабочий ход) . Нагреваясь, рабочий газ расширяется, передвигая при этом вытеснитель и вместе с ним рабочий поршень вниз. Совершается полезная работа.

Стирлинг имеет замкнутый цилиндр. На рис. 3, а показана диаграмма теоретического цикла (диаграмма V - Р). По оси абсцисс отложены объемы цилиндра, по оси ординат - давления в цилиндре. Первый такт является изотермическим I-II, второй происходит при постоянном объеме II-III, третий - изотермический III-IV, четвертый - при постоянном объеме IV-I. Так как давление во время расширения горячего газа (III-IV) больше давления во время сжатия холодного газа (I-II), то работа расширения больше работы сжатия. Полезную работу цикла можно графически изобразить в виде криволинейного четырехугольника I-II-III-IV.

В действительном процессе поршень и вытеснитель движутся непрерывно, так как они связаны с кривошипно-шатунным механизмом, поэтому диаграмма действительного цикла скруглена (рис. 3, б).

Теоретический к. п. д. двигателя стирлинга составляет 70%. Исследования показали, что на практике можно получить к. п. д., равный 50%. Это значительно больше, чем у самых лучших газовых турбин (28%), бензиновых двигателей (30%) и дизелей (40%).


Стирлинг может работать на бензине, керосине, дизельном, газообразном и даже твердом топливе. По сравнению с другими двигателями, он имеет более мягкий и почти бесшумный ход. Объясняется это низкой степенью сжатия (1,3÷1,5), к тому же давление в цилиндре повышается плавно, а не взрывом. Продукты сгорания также выпускаются без Шума, так как сгорание происходит постоянно. В них сравнительно немного токсичных составляющих, потому что горение топлива происходит непрерывно и при постоянном избытке кислорода (α=1,3).

Стирлинг с ромбической передачей полностью уравновешен, в нем не возникает вибраций. Это качество, в частности, было учтено американскими инженерами, установившими одноцилиндровый стирлинг на искусственном спутнике Земли, где даже небольшая вибрация и неуравновешенность могут привести к потере ориентации.

Одним из проблемных вопросов остается охлаждение. В стирлинге с выпускными газами отводится только 9% тепла, получаемого от топлива, поэтому, например, при установке его на автомобиле пришлось бы делать радиатор примерно в 2,5 раза больше, чем при использовании бензинового двигателя той же мощности. Задача решается проще на судовых установках, где эффективное охлаждение обеспечивается неограниченным количеством забортной воды.


На рис. 4 показан разрез двухцилиндрового катерного двигателя Филипс мощностью 115 л. с. при 3000 об/мин с горизонтальным расположением цилиндров. Общий рабочий объем каждого цилиндра 263 см 3 . Поршни, расположенные оппозитно, соединены с двумя траверсами, что позволило полностью уравновесить газовые силы и обойтись без буферных объемов. Подогреватель выполнен из трубок, окружающих камеру сгорания, по которым проходит рабочий газ. Охладителем служит трубчатый холодильник, через который прокачивается забортная вода. Двигатель имеет два коленчатых вала, соединенных с гребным валом посредством червячных передач. Высота двигателя всего 500 мм, что позволяет установить его под настилом и таким образом уменьшить размеры машинного отсека.

Мощность стирлинга регулируется в основном изменением давления рабочего газа. Одновременно, чтобы поддерживать температуру подогревателя постоянной, регулируется и подача топлива. Для двигателя внешнего сгорания пригодны практически любые источники тепла. Важно, что он может превращать в полезную работу низкотемпературную энергию, на что не способны двигатели внутреннего сгорания. Из кривой на рис. 5 видно, что при температуре подогревателя всего 350° С к. п. д. стирлинга еще равен ≈ 20%.

Стирлинг экономичен - удельный расход топлива у него составляет всего 150 г/л. с. час. В энергетической установке «двигатель стирлинг- аккумулятор тепла», использующейся на американских спутниках Земли, тепловым аккумулятором служит гидрит лития, который поглощает тепло в период «освещения» и Отдает его стирлингу, когда спутник находится на теневой стороне Земли. На спутнике двигатель служит для привода генератора мощностью 3 квт при 2400 об/мин.

Создан опытный мотороллер со Стирлингом и аккумулятором тепла. Использование аккумулятора тепла и стирлинга на подводной лодке позволяет ей в несколько раз дольше идти в погруженном положении.

Литература

  • 1. Смирнов Г. В. Двигатели внешнего сгорания. «Знание», М., 1967.
  • 2. Dr. Ir. R. I. Meijer. Der Philips - Stirlingmotor, MTZ, N 7, 1968.
  • 3. Curtis Anthony. Hot air and the wind of change. The Stirling engine and its revival. Motor (Engl.), 1969, (135), N 3488.

- тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания...

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью - увеличение по клику.

Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.