» » Какое зажигание лучше: кулачковое или электронное. Бесконтактная система зажигания Чем отличается контактная система зажигания от бесконтактной

Какое зажигание лучше: кулачковое или электронное. Бесконтактная система зажигания Чем отличается контактная система зажигания от бесконтактной

Лекция 7 . Измерение температуры. Контактный и бесконтактный способы. Измерение тепловых потоков.

7.1. Измерение температуры.

Температура - это параметр теплового состояния, представляющий собой физическую величину, которая характеризует степень нагретости тела. Степень нагретости тела обусловлена его внутренней энергией. Непосредственно измерить температуру тела невозможно. Температура измеряется косвенным путем с использованием температурной зависимости какого-либо физического свойства термометрического тела. В качестве термометрического тела используются тела, у которых удобные для непосредственного измерения физические свойства однозначно зависят от температуры. Такими физическими свойствами являются, в частности, объемное расширение ртути, изменение давления газов и т.д.

При измерении температуры какого-либо тела термометрическое тело должно быть с ним в тепловом контакте. В этом случае с течением времени наступает тепловое равновесие между ними, т.е. температура этих тел выравнивается. Такой способ измерения температуры, при котором измеряемая температура тела определяется по совпадающей с ней температуре термометрического тела, называется контактным способом измерения температуры. Возможные расхождения между этими значениями температуры составляют методическую погрешность контактного способа измерения температуры.

В природе нет идеально подходящих рабочих тел, термометрические свойства которых удовлетворяли бы предъявляемым требованиям во всем диапазоне измерения температуры. Поэтому температуру, измеряемую термометром, шкала которого построена на допущении линейной температурной зависимости термометрических свойств какого-либо тела, называют условной температурой, а шкалу - условной температурной шкалой. Примером условной температурной шкалы является известная стоградусная шкала Цельсия. В ней принят линейный закон температурного расширения ртути, а в качестве основных точек шкалы используются точка таяния льда (0°С) и точка кипения воды (100°С) при нормальном давлении. Термодинамическая температурная шкала, предложенная Кельвином, основана на втором законе термодинамики и не зависит от термометрических свойств тела. Построение шкалы опирается на следующие положения термодинамики: если в прямом обратимом цикле Карно к рабочему телу подводится теплота Q 1 от источника с высокой температурой T 1 и отводится теплота Q 2 к источнику с низкой температурой Т 2 , то отношение T 1 / Т 2 равно отношению Q 1 /Q 2 независимо от природы рабочего тела. Эта зависимость позволяет построить шкалу, опираясь только на одну постоянную или реперную точку с температурой Т 0 . Пусть температура источников теплоты Т 2 =Т 0 , a T 1 =T, причем Т неизвестна. Если между этими источниками осуществить прямой обратимый цикл Карно и измерить количество подводимой Q 1 и отводимой Q 2 теплоты, то неизвестную температуру можно определить по формуле

Таким способом можно произвести градуирование всей температурной шкалы.

В качестве единственной реперной точки для Международной термодинамической температурной шкалы принята тройная точка воды, и ей присвоено значение температуры 273,16 К. Выбор этой точки объясняется тем, что она может быть воспроизведена с высокой точностью - погрешность не превысит 0,0001 К, что значительно меньше погрешности воспроизведения точек таяния льда и кипения воды. Кельвином называется единица термодинамической температурной шкалы, определяемая как 1/273,16 часть температурного интервала между тройной точкой воды и абсолютным нулем. Такой выбор единицы обеспечивает равенство единиц в термодинамической и стоградусной шкалах: температурный интервал в 1К равен интервалу в 1°С.

Ввиду того, что определение температуры путем осуществления прямого обратимого цикла Карно с измерением подводимой и отводимой теплоты сложно и затруднительно, для практических целей на основе термодинамической температурной шкалы установлена Международная практическая температурная шкала МПТШ-68 (1968 - год принятия шкалы). Эта шкала устанавливает температуру в диапазоне от 13,81 К до 6300 К и максимально приближена к Международной термодинамической температурной шкале. Методика ее реализации базируется на основных реперных точках и на эталонных приборах, градуированных по этим точкам. МПТШ- 68 опирается на 11 основных реперных точек, представляющих собой оп-ределенное состояние фазового равновесия некоторых веществ, которым присвоено точное значение температуры.

7.1.1. Контактное измерение температуры.

По принципу действия контактные термометры делятся на:

1.Термометры, основанные на тепловом расширении вещества. Используются с термометрическим телом в жидком состоянии (например, ртутные жидко-стеклянные термометры) и в твердом состоянии - биметаллические, действие которых основано на различии коэффициентов линейного теплового расширения двух материалов (например, инвар -латунь, инвар - сталь).

2. Термометры, основанные на измерении давления вещества.

Это манометрические термометры, которые представляют собой замкнутую герметичную термосистему, состоящую из термобаллона, манометрической пружины и соединяющего их капилляра.

Действие термометра основано на температурной зависимости давления газа (например, азота) или паров жидкости, заполняющих герметичную термосистему. Изменение температуры термобаллона вызывает перемещение пружины, соответствующее измеряемой температуре. Манометрические термометры выпускаются как технические приборы для измерения температуры от -150°С до +600°С в зависимости от природы термометрического вещества.

3. Термометры, основанные на температурной зависимости термо-ЭДС. К ним относятся термоэлектрические термометры или термопары.

4.Термометры, основанные на температурной зависимости электрического сопротивления вещества. К ним относятся электрические термометры сопротивления.

Жидкостный стеклянный термометр представляет собой тонкостенный стеклянный резервуар, соединенный с капилляром, с которым жестко связана температурная писала. В резервуар с капилляром заливается термометрическая жидкость, на температурной зависимости теплового расширения которой основано действие термометра. В качестве термометрической жидкости используется ртуть и некоторые органические жидкости - толуол, этиловый спирт, керосин.

Достоинствами жидкостных стеклянных термометров являются простота конструкции и обращения; низкая стоимость, достаточно высокая точность измерения. Эти термометры применяются для измерения температуры от минус 200°С до плюс 750°С.

Недостатками жидкостных стеклянных термометров являются большая тепловая инерция, невозможность наблюдения и измерения температуры на расстоянии, хрупкость стеклянного резервуара.

Термоэлектрический термометр основан на температурной зависимости контактных термо-ЭДС в цепи из двух разнородных термоэлектродов. При этом происходит преобразование неэлектрической величины-температуры в электрический сигнал - ЭДС. Термоэлектрические термометры часто называют просто термопарами. Термоэлектрические термометры широко применяют в диапазоне температуры от -200°С до +2500°С, но в области низких температур (менее -50°С) они получили меньшее распространение, чем электрические термометры сопротивления. При температуре выше 1300°С термоэлектрические термометры применяют в основном для кратковременных измерений. Достоинствами термоэлектрических термометров являются возможность измерения температуры с достаточной точностью в отдельных точках тела, малая тепловая инерция, достаточная простота изготовления в лабораторных условиях, выходной сигнал является электрическим.

В настоящее время для измерения температур используются следующие термопары:

Вольфрам-вольфрамрениевые (ВР5/20) до 2400...2500К;

Платино-платинородиевые (Pt/PtRh) до 1800... 1900 К;

Хромель-алюмелевые (ХА) до 1600.. .1700 К;

Хромель-копелевые (ХК) до 1100 К.

При подключении измерительного прибора к термопарной цепи возможны 2 схемы:

1) с разрывом одного из термоэлектродных проводов;

2) с разрывом холодного спая термопары.

Для измерения малой разности температуры часто используется термобатарея, состоящая из нескольких последовательно соединенных термопар. Такая термобатарея позволяет повысить точность измерения в результате увеличения выходного сигнала во столько раз, сколько термопар в термобатарее.

Термо-ЭДС в термопарной цепи можно измерить милливольтметром по методу непосредственной оценки и потенциометром по методу сравнения.

Электрические термометры сопротивления основаны на температурной зависимости электрического сопротивления термометрического вещества и широко применяются для измерения температуры от -260°С до +750°С, а в отдельных случаях до +1000°С. Чувствительным элементом термометра является терморезисторный преобразователь, который позволяет преобразовать изменение температуры (неэлектрической величины) в изменение сопротивления (электрической величины). Терморезистором может служить любой проводник с известной температурной зависимостью сопротивления. В качестве материала для терморезистора используют такие металлы как, платина, медь, никель, железо, вольфрам, молибден. Кроме них, в термометрах сопротивления могут быть использованы некоторые полупроводниковые материалы.

Достоинствами металлических термометров сопротивления являются высокая степень точности измерения температуры, возможность применения стандартной градуировочной шкалы во всем диапазоне измерения, электрическая форма выходного сигнала.

Чистая платина, для которой отношение сопротивления при 100°С к сопротивлению при 0°С составляет 1,3925, в наибольшей степени удовлетворяет основным требованиям по химической стойкости, стабильности и воспроизводимости физических свойств и занимает особое место в терморезисторах для измерения температуры. Платиновые термометры сопротивления используются для интерполяции Международной температурной шкалы в диапазоне от -259,34°С до +630,74°С. В этом диапазоне температур платиновый термометр сопротивления превосходит по точности измерения термоэлектрический термометр.

Недостатками термометров сопротивления являются невозможность измерения температуры в отдельной точке тела из-за значительных размеров его чувствительного элемента, необходимость постороннего источника электропитания для измерения электрического сопротивления, малое значение температурного коэффициента электрического сопротивления для металлических термометров сопротивления, которое требует для измерения небольших изменений сопротивления высокочувствительные и точные приборы.

7.1.2. Бесконтактное измерение температур с помощью пирометров излучения.

Пирометрами излучения или просто пирометрами называют приборы для измерения температуры тел по тепловому излучению. Измерение температуры тел пирометрами основано на использовании законов и свойств теплового излучения. Особенностью методов пирометрии является то, что информация об измеряемой температуре передается неконтактным способом. Ввиду этого удается избежать искажений температурного поля объекта измерений, так как не требуется непосредственного соприкосновения термоприемника с телом.

По принципу действия пирометры для локального измерения температуры делят на яркостные пирометры, цветовые пирометры, радиационные пирометры.

Основной величиной, воспринимаемой глазом исследователя или приемниками теплового излучения пирометров, является интенсивность или яркость излучения тела. Действие яркостных пирометров основано на использовании зависимости спектральной интенсивности излучения тела от температуры тела. Яркостные пирометры, используемые в видимой части спектра излучения, с регистрацией сигнала при помощи глаз исследователя, называются оптическими пирометрами. Оптические пирометры являются наиболее простыми в обслуживании и широко применяются для измерения температуры от 700°С до 6000°С.

Для измерения яркостной температуры в видимой части спектра широко используются оптические пирометры с исчезающей нитью переменного и постоянного накала. Яркостная температура тела измеряется путем сравнения спектральной интенсивности излучения измеряемого тела с интенсивностью излучения нити пирометрической лампы при одной и той же эффективной длине волны (эффективная длина волны находится внутри узкого конечного интервала длин волн, в котором происходит излучение тела). При этом яркостная температура нити лампы устанавливается градуировкой по абсолютно черному телу или по специальной температурной лампе.

Оптическая система пирометра позволяет создать изображение объекта измерения в плоскости нити пирометрической лампы. В момент достижения равенства спектральных интенсивностей излучения объекта измерения и нити лампы вершина нити исчезает на фоне свечения тела.

Принцип действия цветовых пирометров основан на использовании зависимости отношения интенсивностей излучения, измеренных в двух достаточно узких спектральных интервалах, от температуры излучающего тела. Название «цветовые пирометры» происходит из-за того, что в видимой части спектра изменение длины волны при фиксированной температуре тела сопровождается изменением его цвета. Цветовые пирометры применяются для автоматического измерения температур в диапазоне 700°С - 2880°С. Цветовые пирометры имеют более низкую чувствительность, чем яркостные, в особенности при высокой температуре, но при использовании цветовых пирометров поправки на температуру, связанные с отличием свойств реальных тел от свойств абсолютно черного тела, получаются меньшими, чем при использовании других пирометров.

Радиационные пирометры - это приборы для измерения температуры по интегральной интенсивности (яркости) излучения тела. Они используются для измерения температуры от 20°С до 3500°С. Эти приборы имеют меньшую чувствительность, чем яркостные и цветовые, но измерения радиационными методами технически более простые.

Радиационные пирометры состоят из телескопа, приемника интегрального излучения, вторичного прибора и вспомогательных устройств. Оптическая система телескопа концентрирует энергию излучения тела на приемник интегрального излучения, степень нагрева которого, т.е. температура, а, следовательно, и выходной сигнал пропорциональны падающей энергии излучения и определяют радиационную температуру тела. В качестве приемника излучения (чувствительного элемента) чаще всего используют термобатареи из нескольких последовательно соединенных термопар. Наряду с термобатареями в качестве приемников интегрального излучения могут быть использованы и другие теплочувствигельные элементы, например болометры, в которых излучение от объекта измерения нагревает чувствительный к температуре резистор. Изменение температуры резистора служит мерой радиационной температуры.

В качестве вторичных приборов, регистрирующих сигнал приемника излучения, используют показывающие самопишущие и регистрирующие приборы. Шкала вторичных приборов обычно градуируется в градусах радиационной температуры. Для исключения погрешностей, обусловленных нагревом корпуса пирометра (телескопа) из-за теплообмена его с окружающей средой и в результате поглощения излучения от объекта измерения. Телескопы радиационных пирометров могут быть снабжены различными системами температурной компенсации.

7.2. Измерение тепловых потоков.

Измерение тепловых потоков необходимо при исследовании рабочих процессов машин и аппаратов, при определении тепловых потерь и исследовании условий теплообмена поверхностей с потоками газа или жидкости.

Методы измерения тепловых потоков и реализующие их устройства чрезвычайно разнообразны. По принципу измерения теплового потока все методы можно разделить на 2 группы.

1. Энтальпийные методы.

С помощью энтальпийных методов плотность теплового потока определяется по изменению энтальпии воспринимающего тепло тела. В зависимости от способа фиксирования этого изменения энтальпийные методы подразделяются на калориметрический метод, электрометрический метод, метод, использующий энергию изменения агрегатного состояния вещества.

2. Методы, основанные на решении прямой задачи теплопроводности.

Прямая задача теплопроводности заключается в отыскании температуры тела, удовлетворяющей дифференциальному уравнению теплопроводности и условиям однозначности. В этих методах плотность теплового потока определяется по градиенту температуры на поверхности тела. Среди методов этой группы различают метод вспомогательной стенки, теплометрический метод с использованием поперечной составляющей потока, градиентный метод.

Методы, основанные на решении прямой задачи теплопроводности основаны на определении плотности теплового потока, пронизывающего исследуемый объект. Этот метод реализован на практике использованием батарейных термоэлектрических преобразователей теплового потока в электрический сигнал постоянного тока. Действие основано на использовании физической закономерности установления разности температур на стенке при пронизывании ее тепловым потоком. Оригинальность батарейного преобразователя теплового потока состоит в том, что стенка, на которой создается разность температур, и измеритель этой разности объединены в одном элементе. Это достигается за счет того, что преобразователь выполнен в виде так называемой вспомогательной стенки, состоящий из батареи дифференциальных термопар, которые включены параллельно по измеряемому тепловому потоку и последовательно по генерируемому электрическому сигналу.

Батарея термоэлементов изготовляется по гальванической технологии. Единичный гальванический термоэлемент представляет собой комбинацию восходящей и нисходящей ветвей термопар, причем, восходящая ветвь – основной проводник, а нисходящая – гальванически покрытый парным термоэлектродным материалом участок этого же проводника. Пространство между ними заполнено электроизоляционным компаундом. Конструктивно преобразователь состоит из корпуса, внутри которого при помощи компаунда крепится батарея термоэлементов и отводящие проводники, выведенные из корпуса через два отверстия.

Рис. 7.1. Схема батареи гальванических термоэлементов:

    основная термоэлектрическая проволока, 2 - гальваническое покрытие, 3 - заливочный компаунд; 4 - каркасная лента.

Измеряемый тепловой поток определяется по формуле

где Q – тепловой поток от объекта Вт,

k – градуировочный коэффициент Вт/мВ,

e – термоэдс, генерируемая преобразователем мВ.

Такие батарейные преобразователи могут быть использованы в качестве высокочувствительных теплометрических элементов (тепломеров) при различных тепловых измерениях.

Литература.

    Гортышев Ю.Ф. Теория и техника теплофизического эксперимента. – М., «Энергоатомиздат», 1985.

    Тепло- и массообмен. Теплотехнический эксперимент. Справочник под ред. Григорьева В.А. – М., «Энергоатомиздат», 1982.

    Иванова Г.М. Теплотехнические измерения и приборы.- М., «Энергоатомиздат», 1984.

    Приборы для теплофизических измерений. Каталог. Институт проблем энергосбережения АН УССР. Составители Геращенко О.А., Грищенко Т.Г. – Киев, «Час», 1991.

    http://www.kobold.com/

    Бесконтактная система зажигания является конструктивным продолжение контактно-транзисторной системы зажигания. В данной системе зажигания контактный прерыватель заменен бесконтактным датчиком. Бесконтактная система зажигания стандартно устанавливается на ряде моделей отечественных автомобилей, а также может устанавливаться самостоятельно вместо контактной системы зажигания.

    Применение бесконтактной системы зажигания позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ за счет более высокого напряжения разряда (30000В) и соответственно более качественного сгорания топливно-воздушной смеси.

    Конструктивно бесконтактная система объединяет ряд элементов, среди которых источник питания, выключатель зажигания, датчик импульсов, транзисторный коммутатор, катушка зажигания , распределитель и конечно свечи зажигания . Распределитель соединен со свечами и катушкой зажигания с помощью проводов высокого напряжения.

    В целом устройство бесконтактной системы зажигания аналогично контактной системе зажигания , за исключением датчика импульсов и транзисторного коммутатора.

    Датчик импульсов предназначен для создания электрических импульсов низкого напряжения. Различают датчики импульсов следующих типов: Холла, индуктивный и оптический.

    Наибольшее применение в бесконтактной системе зажигания нашел датчик импульсов использующий эффект Холла (возникновение поперечного напряжения в пластине проводника с током под действием магнитного поля). Датчик Холла состоит из постоянного магнита, полупроводниковой пластины с микросхемой и стального экрана с прорезями (обтюратора).

    Прорезь в стальном экране пропускает магнитное поле и в полупроводниковой пластине возникает напряжение. Стальной экран не пропускает магнитное поле, и напряжение на полупроводниковой пластине не возникает. Чередование прорезей в стальном экране создает импульсы низкого напряжения.

    Датчик импульсов конструктивно объединен с распределителем и образуют одно устройство – датчик-распределитель. Датчик-распределитель внешне подобен прерывателю-распределителю и имеет аналогичный привод от коленчатого вала двигателя .

    Транзисторный коммутатор служит для прерывания тока в цепи первичной обмотки катушки зажигания в соответствии с сигналами датчика импульсов. Прерывание тока осуществляется за счет отпирания и запирания выходного транзистора.

    Принцип работы бесконтактной системы зажигания

    При вращении коленчатого вала двигателя датчик-распределитель формирует импульсы напряжения и передает их на транзисторный коммутатор. Коммутатор создает импульсы тока в цепи первичной обмотки катушки зажигания. В момент прерывания тока индуцируется ток высокого напряжения во вторичной обмотке катушки зажигания. Ток высокого напряжения подается на центральный контакт распределителя. В соответствии с порядком работы цилиндров двигателя ток высокого напряжения подается по проводам высокого напряжения на свечи зажигания. Свечи зажигания осуществляют воспламенение топливно-воздушной смеси.

    При увеличении оборотов коленчатого вала регулирование угла опережения зажигания осуществляется центробежным регулятором опережения зажигания.

    При изменении нагрузки на двигатель регулирование угла опережения зажигания производит вакуумный регулятор опережения зажигания.

    Если хочешь знать, мое мнение такое, что книга — источник знаний. Вот я и говорю. Помню, мне один рассказывал. «Всему, — говорит, — что у меня хорошего есть, я обязан книгам».

    Случайно услышанное, но запавшее в душу

    Вы уже, наверное, сумели убедиться, что все люди, в основном, находятся на грубом физическом плане. Пациенты приходят с таким набором заболеваний, что на уровне чисто ментальной работы с ними можно помочь единицам, когда в помощи нуждаются сотни. Этим целям (помочь всем или хотя бы большинству нуждающихся) и служит мануальная терапия и массаж, не отрицающие, а скорее, даже подключающие богатый арсенал парапсихологических свойств к чисто физическим. Итак, «еще раз о боли». Проблема боли является с древнейших времен основным предметом изучения медиков, однако сущность и механизм ее окончательно не раскрыты, а методы изучения далеки от совершенства.

    К рассмотрению ее психологического характера и под-водит нас логика бытия. Более половины причин, вызывающих боль, кроется в нехитрых (на первый взгляд) причинах: что и как Вы едите, как сидите, какова физическая нагрузка. Первоначально развивающаяся боль (не путайте с болезнями хирургического порядка) возникает в результате непрерывного сокращения мышц, этой болью можно управлять — это неорганика. О хронических болях не надо думать как о чем-то частном, перед Вами — второй сигнал бедствия всего организма.

    Первый — это щекотка (обратите внимание: у нервных людей реакция на раздражение щекочущего характера одинакова почти по всему телу). Физическая дисгармония njfioc социум дают нам точки необратимых последствий; конечно, можно и таблетку принять, но, таким образом, мы игнорируем организм в целом, а после окончания действия таблетки боль возобновится. Вспомните: что-то заболело. Наша первая реакция: пять минут отдыха или пять таблеток? Автор надеется, что вы уже убеждены, что мануальная работа так же важна, как и сенсорная, особенно у начинающих.

    При мануальном воздействии, даже при отсутствии контакта на ментальном уровне, все равно можно помочь человеку чисто механическим воздействием на рефлексогенные зоны. При наличии «подключения» проведение сеанса мануальной терапии гарантирует успех в 80-85% случаев. Многие нарушения в организме носят психологический характер, при работе с пациентом просматривается явная связь между характером нарушений и стрессами. В человеке заложена способность справиться со стрессом еще в 4-5 лет, однако, как показывает практика, те, кто уже в это время дает неадекватную реакцию, не сохраняет это качество на всю оставшуюся жизнь.

    Много нарушений возникает из-за того, что человек много и долго сдерживается, не умея сбросить этот груз, хотя (еще раз напоминаю) человек рождается с врожденной реакцией на стресс (гормональное обеспечение, запредельное торможение и т. д.). Если же критических ситуаций много, а «сброса» нет, то идет своеобразное накопление напряжения до тех пор, пока оно не находит выхода через боль. В первую очередь происходят нарушения в области желудочно-кишечного тракта, боли в спине и пояснице, сосудистая реакция, неполадки в сердечно-сосудистой системе.

    Пожалуйста, скопируйте приведенный ниже код и вставьте его на свою страницу - как HTML.

    В состав автомобиля входит четыре системы: охлаждения, смазки, топливная и зажигания. Выход из строя каждой из них в отдельности приводит к полному выходу из строя всего автомобиля. Если поломка найдена, ее нужно устранить, и чем раньше, тем лучше, поскольку ни одна из систем не выходит из строя сразу. Этому, как правило, предшествует множество «симптомов».

    В этой статье мы более подробно остановимся на системе зажигания. Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в распределителе. В момент, когда размыкаются эти контакты, в катушке образуется индукционный ток, который подается посредством высоковольтных проводов на свечи.

    Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

    Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо - плюсы во всех сферах эксплуатации.

    Но не все так гладко, как хотелось бы. Например, бывают случаи, когда выходит из строя коммутатор. Если замена контактного блока обойдется в 150-200 рублей при хорошем качестве, то здесь цены в 3-4 раза больше. Помимо прочего, замена контактного зажигания на бесконтактное влечет за собой и замену высоковольтных проводов на силиконовые, если они не были установлены ранее. Конечно, можно оставить и стандартные, но тогда возможны пробои, а значит - перебои в зажигании и во всей работе двигателя.

    Теперь немного о самой системе. Питание постоянно подается на контакты распределителя зажигания, через которые оно идет к первичной (малой) обмотке катушки. В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения. Он-то и подается на свечи зажигания.

    Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Конечно же, после замены самого распределителя нужно будет выставить момент зажигания, но, во-первых, это не слишком сложно, а во-вторых - можно изначально выставить бегунок в удобное положение и запомнить, чтобы потом аналогично установить коммутатор. А еще стоит отключить аккумулятор от цепи, чтобы не получить ожогов или прочих травм.

    Доброго времени суток, всем автолюбителям! Друзья, вы как никто другой знаете, что буквально каждый водитель и днем, и ночью стремится усовершенствовать собственное транспортное средство. Тюнингу может подвергнуться абсолютно любой узел машины от крышки багажника, на которую мы так любим монтировать популярный во все времена спойлер, до двигателя, чья мощность увеличивается самыми разнообразными способами. Сегодня, мы под микроскопом рассмотрим ни то, ни другое – бесконтактное зажигание. Узнаем принцип его работы, устройство, возможные неисправности, а в финале друзья, вы получите мастер-класс по установке механизма от вашего покорного слуги.

    «Львиная доля» здесь присутствующих непременно задалась вопросом, «Какой же это тюнинг? Вон на моей данная система, интегрирована в штатном комплекте.»

    Сразу скажу, данная публикация будет мало чем полезна обладателям новых современных авто ведь бесконтактная система зажигания, установлена абсолютно в каждой такой модели, независимо от марки производителя. Так вот, говорить я буду больше для владельцев некоторых старых иномарок, а также родной отечественной классики. Если вам, уже порядком надоело слушать о различных преимуществах БСЗ и «пускать слюни», самое время приобрести установку. Сомневаетесь актуальна ли она? Поразмышляем вместе…

    Чем бесконтактное лучше контактного зажигания

    По себе знаю, водителю что-то новое дается ой как не просто, многим гораздо легче возиться со старыми трамблерами, менять эту чертову «контактную группу», иногда даже в дороге. Могу понять, сегодня, не каждый сможет выкинуть на собственное авто порядка 2-3 тысяч рублей (Вазовский комплект), особенно если машина хорошо функционирует. Хотя с другой стороны не такие уж это и большие деньги на любимую «ласточку», причем вложение это – одноразовое! Поверьте, бояться не чего! Не зря ведь, на каждой втором автомобиле, установлена именно бесконтактная система зажигания.

    К сведению: контактная группа предназначена для размыкания и замыкания электрической цепи функционирует по принципу механическому контакта, соответственно изнашивается регулярно, при этом значительно снижает срок службы опорного подшипника.

    Для того чтобы окончательно убедить старых «водил» консервативных взглядов в преимуществе бесконтактной системы над контактной, нужно просто сравнить их между собой. Таким образом мы и узнаемкакое зажигание лучше, проведем две параллели на фоне достоинств БСЗ.

    Преимущества БСЗ

    1. Простой монтаж и настройка – в старых же системах, процедура корректировки нужного зазора у контактов, давалась далеко не каждому водителю.
    2. Надежность в работе – тут в противовес добавить что-то сложно ведь контактную систему, «лихорадит» довольно часто.
    3. Отличные пусковые качества – благодаря тому, что ток, который подается на первичную обмотку катушки зажигания, исходит от полупроводникового коммутатора, что в свою очередь позволяет значительно повысить энергию искры, напряжение на вторичной обмотке той же катушки, может достигать 10 кВ. Все это в сумме, ну очень помогает в наши холодные зимы.
    4. Более высокая мощность – заменивший контактную группу электромагнитный импульсный создатель (использует в своей работе эффект Холла), демонстрирует отличную эффективность. В паре с электронным коммутатором, назначение которого в своевременном запирании или отпирании транзистора на выходе, механизм работает четко и стабильно при любых оборотах силового агрегата.
    5. Экономия – на 100 км, до одного литра топлива!
    6. Низкое энергопотребление – нагрузка на аккумулятор существенно снижается даже при включенном зажигании, ведь элетроблок, требует питание только после начала вращения вала.

    Обратите внимание: БСЗ для инжекторных и карбюраторных моторов может отличаться.

    Если и этого мало, так же отмечу редкую потребность в обслуживании бесконтактного зажигания. Производитель, требует смазывать вал трамблера каждые 10000 километром и это в принципе единственное замечание от автозавода. Чем отличаются ясно, скажу и о слабом месте в бесконтактной системе – это коммутаторы, которые чаще других деталей выходят из строя.

    Структура БСЗ

    Бесконтактная система зажигания – это целый ряд различных механизмов, а именно:

    • Выключатель зажигания;
    • Датчик импульсов;
    • Транзисторный коммутатор;
    • Катушка зажигания;
    • Свечи зажигания;
    • Датчик-распределитель (трамблер);
    • Провода высокого и низкого напряжения.

    Наглядно устройство бесконтактной системы зажигания можно разглядеть на фото, коротко разберем и принцип ее работы.

    Как вы уже, наверное, поняли в основе всей системы лежит датчик Холла, который воздействуя на полупроводник магнитным полем, создает поперечное напряжение. Происходит это за счет щелевой конструкции прибора, то есть, по разные стороны от отверстия располагается полупроводник (и постоянный магнит.

    В самой щели вращается стальной цилиндр с прорезями. Таким образом при совпадении щели датчика и прорезей цилиндра, магнитный поток воздействует на проводник (по которому кстати при включенном зажигании протекает ток), далее, образовавшиеся импульсы, воздействуют на коммутатор, после чего они преобразовываются в ток первичной обмотки катушки зажигания.

    Слабые места системы

    Абсолютно не важно какая система установлена на вашем авто бесконтактное электронное зажигание, БСЗ или же обычная контактная, проблемы в их работе зачастую могут ничем не отличаться.

    • Неисправная катушка зажигания;
    • Проблемы со свечами;
    • Обрыв высоковольтной или низковольтной цепи.

    Бесконтактноя транзисторная система зажигания отличается своими, присущими только ей недугами.

    Подобные неисправности бесконтактной системы, конечно же сразу отразятся на работе автомобиля. Так, в случае проблем с запуском мотора, проверьте проводку, катушку зажигания или же свечи. Если же авто барахлит на холостом ходу, исследуйте крышку датчика-распределителя на наличие пробоин, непосредственно сам прибор и транзистор коммутатор.

    При значительной потери мощности машины или увеличению ее расхода, обратите внимание на состояние свечей зажигания, вакуумного и центробежного регулятора напряжения.

    Монтаж БСЗ

    Установка бесконтактного зажигания, процесс вполне доступный, конечно людям с ровными руками. Прежде чем приступить, обязательно убедитесь, правильно ли выставлено зажигание на старом трамблере, при необходимости оставьте метки, в ином случае приступать к процедуре не рекомендуется. Итак, схема подключения бесконтактного зажигания есть (на фото), тогда приступаем, что тянуть.

    1. Демонтируем крышку трамблера вместе с проводами, центральный от катушки также нужно отсоединить.
    2. Далее необходимо выставить бегунок ровно перпендикулярно силовому агрегату, для этого рывками задействуем стартер.
    3. Извлекаем старый трамблер.
    4. На новом снимаем крышку и устанавливаем в посадочное место.
    5. Регулируем распределитель по отмеченным меткам и фиксируем.
    6. Заменяем старую катушку на новую.
    7. Подключаем всю проводку.
    8. Далее, нужно установить коммутатор, для этого найдите под капотом подходящее место и закрепите его к кузову.
    9. Сверьте проделанную работу со схемой.
    10. Запускаем мотор.

    Вот и все, всего 10 шагов и порядка 3 тысяч рублей и БСЗ уже функционирует на вашем авто. И поверьте после этого, вопрос «Какое зажигание лучше?», отпадет сам собой. Ну вот и все, разговор о бесконтактном зажигании подходит к концу, однако уже в следующих публикациях мы с вами подробно разберем не менее важную тему под названием «Модуль зажигания». Уверен у вас все получилось! До скорого!