» » Где находится лямбда зонд? Что такое датчик кислорода (лямбда зонд) и для чего он нужен? За что отвечает первый лямбда зонд.

Где находится лямбда зонд? Что такое датчик кислорода (лямбда зонд) и для чего он нужен? За что отвечает первый лямбда зонд.

Оптимальная работа автомобильного двигателя возможна только при работоспособности всех узлов и систем. При поломке одного из основных компонентов мотор может работать с перебоями, что будет доставлять неудобства автолюбителю. Что такое лямбда-зонд, в чем заключается его принцип действия, как произвести диагностику и очистку контроллера? Ответы на эти вопросы вы найдете ниже.

[ Скрыть ]

Характеристика лямбда-зонда

Что такое датчик кислорода или лямбда-зонд, где находится устройство, в чем заключается его принцип работы, какие функции выполняет этот регулятор? Для начала разберем основные характеристики — назначение, а также где может располагаться девайс.

Назначение и функции

Кислородный датчик представляет собой устройство сопротивления, этот девайс расположен перед катализатором, на впускном коллекторе. Данные, которые передает кислородный датчик, обрабатываются управляющим блоком и используются для поддержания необходимого состава топливовоздушной смеси. Лямбда-зонд передает сигнал на ЭБУ, если в камеры сгорания подается очень богатая или бедная горючая смеси. В соответствии с полученными данными, которые передает кислородный датчик, блок управления регулирует подачу воздуха и топлива для образования смеси.

Устройство и принцип работы

В чем заключается принцип работы кислородного датчика?

Любой универсальный лямбда-зонд включает в свою конструкцию такие составляющие:

  1. Корпус универсального регулятора, который обычно выполнен из металла. На корпусе переднего верхнего или нижнего регулятора также имеется резьба, с помощью которой лямбда-зонд устанавливается в посадочное место. В корпусе также будет отверстие, позволяющее обеспечить вентиляция регулятора.
  2. Уплотнительная резина, позволяющая обеспечить герметичность.
  3. Керамический изолятор.
  4. Наконечник, выполненный из керамики.
  5. Контакты для подключения к бортовой сети.
  6. Защитный щиток, на котором имеется отверстие для выпуска отработанных газов.
  7. Нагревательный компонент устройства.
  8. Спираль, которая монтируется в отдельном резервуаре.

Будь то первый или второй кислородный датчик, устройство изготавливается из термостойкого материала. Это важно, поскольку регулятор функционирует под нагревом, при повышенных температурах. Устройство может относится к одному из нескольких видов, которые отличаются между собой по количеству контактов — одно-, двух-, трех- и четырехпроводные.

Диагностический датчик концентрации кислорода используется для обеспечения правильного расчета нужного объема горючего для определенного объема воздушного потока, подающегося в цилиндры. Устройство выполняет расчет этих значений в соответствии с экологической, а также экономической точки зрения. Это также важно, поскольку в настоящее время к транспортным средствам предъявляются жесткие требования в плане экологической безопасности. Диагностический датчик концентрации кислорода позволяет снизить вред для окружающей среды, основываясь на количестве содержащихся вредоносных для экологии веществ в выхлопных газах.

Причины и симптомы неисправностей

Если в работе регулятора есть неисправности, это может привести к более нестабильной работе двигателя.

По каким причинам кислородный датчик может выйти из строя:

  1. В электроцепи произошел обрыв, в частности, в месте подключения устройства к сети. Также причина может заключаться в плохом контакте контроллера или их окислении.
  2. Замыкание в работе девайса.
  3. Загрязнение — одна из самых часто встречаемых проблем. Такая неисправность, как правило, обусловлена регулярной заправкой транспортного средства низкокачественным горючим.
  4. Термические перегрузки регулятора. Такие проблемы, как правило, обусловлены неполадками в работе системы зажигания.
  5. Постоянное использование автомобиля по бездорожью может привести к серьезным вибрациям и, как следствие, повреждению регулятора.
  6. Лямбда-зонд может перестать функционировать в результате попадания в цилиндры двигателя, а также во впускные магистрали антифриза.
  7. Выход из строя нагревателя датчика кислорода. Обычно эта проблема обусловлена износом устройства.
  8. Еще одной причиной, по которой устройство может отказаться работать, является работа двигателя на обогащенной топливовоздушной смеси.

В том случае, если объем монооксида углерода увеличится до 3% и выше вместо нормативных 0.1-0.3%, это говорит о поломке контроллера. При такой проблеме регулятор демонтируется с помощью съемника и меняется (съемник можно приобрести в любом автомагазине). Съемник представляет собой ключ, позволяющий значительно проще демонтировать устройство. Но если съемника нет, можно обойтись и без него.

Предлагаем более подробно ознакомиться с причинами, которые позволят выявить неисправность девайса:

  • повысился расход горючего;
  • плавающие обороты при работе двигателя, в частности, на холостом ходу;
  • при наборе скорости ощущаются рывки;
  • появились сбои в работе катализатора;
  • возросла концентрация вредных веществ и токсинов в отработанных газах.

Фотогалерея «Схемы лямбда-зонда»

1. Распиновка датчика кислорода 2. Схема обманки второй лямбды

Инструкция по очистке кислородного датчика своими руками

Теперь расскажем о том, как производится диагностика и чистка кислородного датчика. Начнем с проверки устройства.

Диагностика

Прежде чем приступить к проверке, нужно прогреть регулятор, для этого следует запустить двигатель и дать ему поработать около 10 минут. Это позволит обеспечить наиболее оптимальную проводимость электролита, а также образование выходного напряжения на датчике. Процедура диагностики осуществляется без отключения зонда, на запущенном и прогретом двигателе. Сам процесс диагностики осуществляется с применением осциллографа, поскольку такое оборудование позволяет получить самый точный результат.

Если нормированный параметр напряжения отличается от полученного в ходе диагностике, то зонд подлежит замене. Значение напряжения должно составлять не менее 10.5 В при включенном зажигании. При пониженном напряжении необходимо произвести диагностику качества подключения датчика и разъемов, кроме того, следует убедиться в том, что сам аккумулятор не разряжен.

Также следует проверить и сопротивление девайса, для этого надо будет отключить разъем. В идеале значение сопротивления должно варьироваться в районе 2-14 Ом, однако данный показатель зависит от конкретного девайса (автор видео о самостоятельной диагностике — канал v_i_t_a_l_y).

Очистка

Если зонд выходит из строя, то, как правило, он подлежит замене, но в некоторых случаях от проблемы можно избавиться путем очистки девайса . Перед тем, как почистить, необходимо отключить лямбда-зонд и демонтировать, процедура очистки актуальна в том случае, если под защитным колпачком девайса имеются отложения.

Итак, как выполнить прочистку своими руками:

  1. От регулятора нужно отключить питание.
  2. Используя съемник, контроллер извлекается из посадочного места. Если съемника нет, демонтируйте девайс руками.
  3. Непосредственно сама процедура очистки с помощью ортофосфорной кислоты. Сам девайс следует поместить в емкость с кислотой примерно на 10-20 минут. За это время кислота должна успеть удалить все отложения и окисления, не нарушив целостность электродов. Для большей эффективности очистки можно демонтировать защитный колпачок, которые необходимо демонтировать на токарном станке.
  4. Когда процедура очистки будет завершена, регулятор надо будет промыть водой, а также просушить.

Если после выполненных действий работоспособность регулятора не удалось восстановить, девайс подлежит замене. Меняя контроллер, убедитесь в том, что разъемы на заменяемых девайсах одинаковые.

К современным транспортным средствам предъявляются достаточно жесткие требования по содержанию вредных веществ в отработавших газах. Необходимая чистота выхлопа обеспечивается сразу несколькими системами автомобиля, строящими свою работу на основании показаний множества датчиков. Но все же основная ответственность по «обезвреживанию» выхлопных газов ложится на плечи каталитического нейтрализатора, встраиваемого в систему выпуска. Катализатор в силу особенностей происходящих внутри него химических процессов является очень чувствительным элементом, которому на вход должен подаваться поток со строго определенным составом компонентов. Чтобы его обеспечить, необходимо добиться наиболее полного сгорания поступающей в цилиндры двигателя рабочей смеси, что возможно только при соотношении воздух/топливо соответственно 14.7:1. При такой пропорции смесь считается идеальной, а показатель λ=1 (отношение реального количества воздуха к необходимому). Бедной рабочей смеси (избыток кислорода) соответствует λ>1, богатой (перенасыщение топливом) – λ<1.

Точную дозировку осуществляет управляемая контроллером электронная система впрыска, однако качество смесеобразования все равно надо каким-то образом контролировать, так как в каждом конкретном случае возможны отклонения от указанной пропорции. Эта задача решается с помощью так называемого лямбда-зонда, или датчика кислорода. Разберем его конструкцию и принцип работы, а также поговорим о возможных неисправностях.

Устройство и работа кислородного датчика

Итак, лямбда-зонд предназначен для определения качества топливо-воздушной смеси. Делается это посредством замера количества остаточного кислорода в выхлопных газах. Затем данные отправляются в электронный блок управления, который производит коррекцию состава смеси в сторону обеднения или обогащения. Местом установки кислородного датчика является выпускной коллектор или приемная труба глушителя. Автомобиль может оснащаться одним или двумя датчиками. В первом случае лямбда-зонд устанавливается перед катализатором, во втором – на входе и выходе катализатора. Наличие двух датчиков кислорода позволяет более тонко воздействовать на состав рабочей смеси, а также контролировать насколько эффективно выполняет свою функцию каталитический нейтрализатор.

Существуют два типа датчиков кислорода – обычные двухуровневые и широкополосные. Обычный лямбда зонд имеет сравнительно простое устройство и генерирует сигнал волнообразной формы. В зависимости от наличия/отсутствия встроенного нагревательного элемента такой датчик может иметь разъем с одним, двумя, тремя или четырьмя контактами. Конструктивно обычный кислородный датчик представляет собой гальванический элемент с твердым электролитом, роль которого выполняет керамический материал. Как правило, это диоксид циркония. Он проницаем для ионов кислорода, однако проводимость возникает только при нагреве до 300-400 °С. Сигнал снимается с двух электродов, один из которых (внутренний) контактирует с потоком отработавших газов, другой (внешний) – с атмосферным воздухом. Разность потенциалов на выводах появляется только при соприкосновении с внутренней стороной датчика выхлопных газов, содержащих остаточный кислород. Выходное напряжение обычно составляет 0.1-1.0 В. Как уже отмечалось, обязательным условием работы лямбда-зонда является высокая температура циркониевого электролита, которая поддерживается встроенным нагревательным элементом, запитанным от бортовой сети автомобиля.

Система управления впрыском, получая сигнал лямбда-зонда, стремится приготовить идеальную топливо-воздушную смесь (λ=1), сгорание которой приводит к появлению на контактах датчика напряжения 0.4-0.6 В. Если смесь бедная, то содержание кислорода в выхлопе велико, поэтому возникает лишь небольшая разность потенциалов (0.2-0.3 В). В этом случае длительность импульса на открытие форсунок будет увеличена. Чрезмерное обогащение смеси приводит к практически полному сгоранию кислорода, а, значит, в системе выпуска его содержание будет минимальным. Разность потенциалов составит 0.7-0.9 В, что станет сигналом к уменьшению количества топлива в рабочей смеси. Так как режим работы двигателя при езде постоянно меняется, то и корректировка происходит также непрерывно. По этой причине значение напряжения на выходе датчика кислорода колеблется в ту и другую сторону относительно среднего значения. В итоге сигнал получается волнообразным.

Введение в действие каждого нового стандарта, ужесточающего нормы выбросов, повышает требования к качеству смесеобразования в двигателе. Обычные кислородные датчики на основе циркония не отличаются высоким уровнем точности сигнала, поэтому они постепенно вытесняются широкополосными датчиками (LSU). В отличие от своих «собратьев» широкополосные лямбда-зонды измеряют данные в широком диапазоне λ (например, современные зонды Bosch способны считывать значения при λ от 0.7 до бесконечности). Преимуществами датчиков подобного типа являются возможность управления составом смеси каждого цилиндра по отдельности, быстрое реагирование на происходящие изменения и небольшое время, необходимое для включения в работу после запуска двигателя. В результате мотор работает в наиболее экономичном режиме с минимальной токсичностью выхлопа.

Конструкция широкополосного лямбда-зонда предполагает наличие двух типов ячеек: измерительных и накачивающих (насосных). Они разделены между собой диффузионным (измерительным) зазором шириной 10-50 мкм, в котором постоянно поддерживается один и тот же состав газовой смеси, соответствующий λ=1. Такой состав обеспечивает напряжение между электродами на уровне 450 мВ. Измерительный зазор отделен от потока отработавших газов диффузионным барьером, использующимся для откачивания или накачивания кислорода. При бедной рабочей смеси выхлопные газы содержат много кислорода, поэтому он откачивается из измерительного зазора с помощью подводимого к насосным ячейкам «положительного» тока. Если же смесь обогащенная, то кислород, наоборот, закачивается в область измерения, для чего направление тока меняется на противоположное. Электронный блок управления считывает значение потребляемого насосными ячейками тока, находя ему эквивалент в лямбда. Выходной сигнал широкополосного датчика кислорода обычно имеет форму кривой, незначительно отклоненной от прямой линии.

Датчики типа LSU могут быть пяти- или шестиконтактными. Как и в случае с двухуровневыми лямбда зондами, для их нормального функционирования требуется наличие нагревательного элемента. Рабочая температура составляет порядка 750 °С. Современные широкополосники прогреваются всего за 5-15 секунд, что гарантирует минимум вредных выбросов в ходе пуска двигателя. Необходимо следить, чтобы разъемы датчика не были сильно загрязнены, так как через них воздух поступает внутрь в качестве эталонного газа.

Признаки неисправности лямбда-зонда

Кислородный датчик – один из самых уязвимых элементов двигателя. Срок его службы ограничивается 40-80 тысячами км пробега, после которых могут наблюдаться перебои в работе. Сложность диагностики неисправностей, связанных с датчиком кислорода, заключается в том, что он в большинстве случаев «умирает» не сразу, а начинает постепенно деградировать. Например, увеличивается время отклика или передаются неправильные данные. Если по какой-то причине ЭБУ совсем перестал получать информацию о составе отработавших газов, он начинает использовать в работе усредненные параметры, при которых состав топливо-воздушной смеси далек от оптимального. Признаками выхода из строя лямбда-зонда являются:

  • Повышенный расход топлива;
  • Нестабильная работа мотора на холостом ходу;
  • Ухудшение динамических характеристик автомобиля;
  • Повышенное содержание CO в выхлопных газах.

Двигатель с двумя датчиками кислорода более чувствителен к возникающим в системе коррекции смеси неисправностям. При поломке одного из зондов практически невозможно обеспечить нормальное функционирование силового агрегата.

Существует ряд причин, которые могут привести к преждевременной поломке лямбда-зонда или сокращению срока его службы. Вот некоторые из них:

  • Применение бензина плохого качества (этилированного);
  • Неисправности системы впрыска;
  • Пропуски зажигания;
  • Сильный износ деталей ЦПГ;
  • Механическое повреждение самого датчика.

Диагностика и взаимозаменяемость датчиков кислорода

Проверить исправность простого циркониевого датчика в большинстве случаев можно с помощью вольтметра или осциллографа. Диагностика самого зонда заключается в замере напряжения между сигнальным проводом (обычно черного цвета) и массой (может быть желтого, белого или серого цвета). Получаемые значения должны изменяться примерно раз в одну-две секунды от 0.2-0.3 В до 0.7-0.9 В. Необходимо помнить, что корректными показания будут только при полном прогреве датчика, который гарантированно произойдет после достижения двигателем рабочей температуры. Неисправности могут касаться не только измерительного элемента лямбда зонда, но и цепи нагрева. Но обычно нарушение целостности этой цепи фиксируется системой самодиагностики, записывающей код ошибки в память. Обнаружить разрыв можно также путем измерения сопротивления на контактах нагревателя, предварительно отсоединив разъем датчика.

Если самостоятельно установить работоспособность лямбда-зонда не получилось или есть сомнения в правильности произведенных измерений, то лучше обратиться в специализированный сервис. Необходимо точно установить, что проблемы в работе двигателя связаны именно с датчиком кислорода, потому что его стоимость довольно высока, а неисправность может быть вызвана абсолютно другими причинами. Не обойтись без помощи специалистов и в случае с широкополосными кислородными датчиками, для диагностики которых часто применяется специфическое оборудование.

Неисправный лямбда зонд лучше менять на датчик такого же типа. Возможна и установка рекомендованных производителем аналогов, подходящих по параметрам и количеству контактов. Вместо датчиков без подогрева можно установить зонд с нагревателем (обратная замена невозможна), правда, в этом случае необходимо будет проложить дополнительные провода цепи нагрева.

Ремонт и замена лямбда зонда

Если датчик кислорода эксплуатировался длительное время и вышел из строя, то, скорее всего, свои функции перестал выполнять сам чувствительный элемент. В такой ситуации единственным решением является замена. Иногда начинает сбоить новый или проработавший совсем недолго лямбда-зонд. Причиной тому может быть образование на корпусе или самом рабочем элементе датчика различного рода отложений, мешающих нормальному функционированию. В данном случае можно попробовать почистить зонд с помощью ортофосфорной кислоты. После осуществления процедуры чистки датчик промывается водой, сушится и устанавливается на автомобиль. Если с помощью таких действий функциональность восстановить не удастся, то другого пути кроме покупки нового экземпляра нет.

При замене лямбда зонда стоит соблюдать определенные правила. Откручивать датчик лучше на остывшем до 40-50 градусов двигателе, когда тепловые деформации не столь велики и детали не сильно раскалены. При монтаже необходимо смазать резьбовую поверхность специальным герметиком, исключающим прикипание, а также убедиться в целостности прокладки (уплотнительного кольца). Затягивание рекомендуется осуществлять с установленным производителем моментом, обеспечивающим нужную герметичность. При подключении разъема не лишним будет проверить жгут электропроводки на наличие повреждений. После того, как лямбда зонд окажется на своем месте, проводятся испытания на различных режимах работы двигателя. Подтверждением корректной работы кислородного датчика станет отсутствие перечисленных выше признаков неисправности и ошибок в памяти электронного блока управления.

Датчик кислорода - это устройство в выпускном коллекторе двигателя внутреннего сгорания, позволяющее оценить сколько свободного кислорода осталось в выхлопной смеси.

Этот датчик имеет еще и другое название. Лямбда зонд что это за конструкция и откуда появилось это название. Основу датчика составляет твердый керамический электролит выполненный из диоксида циркония, который в свою очередь покрыт оксидом иттрия. Поверх всего по керамическому элементу произведено напыление пористых, токопроводящих электродов из платины.

Принцип действия у него как у гальванического элемента. После установки в выпускной коллектор он разогревается в потоке выхлопных газов до 300 - 400 градусов. Именно в разогретом состоянии циркониевый электролит получает проводимость и обеспечивается его нормальное функционирование. Установлен лямбда зонд таким образом, что один из электродов дышит наружным воздухом, второй - смесью выхлопных газов. Когда на одном из электродов меняется количество кислорода, возникает разница потенциалов передающаяся в виде сигнала на управляющую систему двигателя, которая регулирует подачу топлива на впрыск.

В науке о соотношениях элементов в природе, стехиометрии, лямбда означает соотношение реального количества воздуха к необходимому.

Теоретически оптимальное соотношение - это когда лямбда равна 1, то есть реального воздуха в смеси столько же, сколько необходимого.

Если лямбда больше единицы - это бедная смесь, если это значение меньше единицы - богатая смесь, то есть в смеси избыток бензина, не хватает кислорода для его сжигания.

Для силового агрегата автомобиля оптимальным считается лямбда равное 14,7: 1, то есть бедная смесь. Это объясняется тем, что для эффективного сжигания СО и СН на катализаторе требуется определенное количество кислорода. Современный лямбда зонд ВАЗ 2114 работает как пороговый элемент.

Датчик кислорода ВАЗ 2114, конструкция и особенности применения

Поскольку датчик кислорода включается в работу после нагрева рабочего элемента до 350 градусов, первые его образцы старались размещать как можно ближе к выпускному коллектору. Со временем датчик модернизировали и встроили в него нагревательный элемент, который намного быстрее приводил его в рабочее состояние и теперь, вопрос — где находится лямбда зонд в выхлопной системе, не так уж важен. Конструктивно современный датчик кислорода состоит из следующих элементов.

  1. Керамические наконечники с защитными экранами и отверстиями для отбора, с одной стороны выхлопных газов, с другой - атмосферного воздуха, заключенные в средней части в керамический изолятор. Они являются основным рабочим элементом всего устройства. Это как раз и есть электроды с которых снимается разность потенциалов.
  2. Внутри этих наконечников размещен токопроводящий нагревательный элемент.
  3. В средней части находится токосъемник электрического сигнала.
  4. Все элементы, за исключением чувствительных частей керамических наконечников, заключены в металлический корпус с резьбой, который предназначен для фиксации датчика в корпусе приемной трубы.
  5. В настоящее время современные датчики снабжены комплектом проводов, закрепленных уплотнительной манжетой. Такие датчики называются - четырехпроводной лямбда зонд. Два белых провода - это контакты системы подогрева, один черный - сигнальный и черный (или белый) с полосой - «земля». На более ранних образцах которые применяют до сих пор, разница потенциалов определялась между проводом, который шел от датчика к ЭБУ и массой на корпусе датчика. Для этого перед закручиванием в месте крепления датчик намазывался специфической токопроводящей смазкой. Однако от воздействия высокой температуры смазка выгорала и чувствительность датчика страдала. Теперь этот недостаток устранен.

Комплект проводов датчика кислорода своим другим концом, через штекерную коробочку, подключается к электронному бортовому устройству, которое запрашивает у лямбда зонда данные о состоянии смеси с частотой 2 раза в одну секунду на холостом ходу и чаще при повышении оборотов. Анализируя полученные данные о наличии кислорода в смеси выхлопных газов, ЭБУ корректирует количество впрыскиваемого топлива в двигатель, делая смесь богаче или беднее, в зависимости от поступающих сигналов датчика кислорода. Стремится он к оптимальному значению 14,7: 1, которое заложено в его программе.

Работоспособность датчика проверяется тестированием с измерительным прибором. Нижний уровень сигнала должен быть 0,1 - 0,2 В, верхний - в пределах 0,8 - 0,9 В. Гарантированная работоспособность этих датчиков очень высокая. Признаки неисправности лямбда зонда изготовленного в соответствие с ГОСТ начинают проявляться не раньше чем после пробега 80 тысяч километров, а в среднем они выдерживают нагрузку в 160 тысяч километров. Однако согласно сервисной книжки ВАЗ 2114 рекомендована после пробега 80 тыс. км. Дело в том что он хоть и продолжает сохранять свою работоспособность, но чувствительность его все равно существенно снижена, а значит ухудшаются показатели по расходу топлива, например.

Как влияет лямбда зонд на работу двигателя, признаки его неисправности

Датчик кислорода лямбда зонд оказывает непосредственное влияние на устойчивую работу двигателя поддерживая нужный состав смеси для работы двигателя:

  • двигатель устойчиво, без колебаний, работает на холостых оборотах;
  • при резком нажатии педали газа, происходит своевременная перестройка в питании двигателя смесью соответствующей изменяющимся оборотам, поэтому нет рывков и троения;
  • в атмосферу выбрасываются наилучшим образом сгоревшие выхлопные газы, за счет эффективной работы катализатора, который осуществляет дожиг вредных веществ в выхлопной трубе.

Чтобы обеспечить нормальные условия для работы датчика и продлить его ресурс необходимо соблюдать ряд условий:

  1. Применять только тот бензин, который рекомендован для ВАЗ 2114.
  2. При работе с присадками проверять их качество и разрешение на использование.
  3. Ни в коем случае не применять для крепления датчика герметики, особенно силиконовые.
  4. Не допускать многократных попыток запуска за короткий промежуток времени.
  5. Не отключать свечи зажигания при проверке работы цилиндров.
  6. Не допускать перегрева выхлопной системы из-за скопления не сгоревшего топлива в ней, датчик выдерживает температуру только до 950 градусов.
  7. Нельзя обмывать наконечники любой из химически активных жидкостей.
  8. Следить за соблюдением герметичности в месте соединения датчика с трубой.

Признаками по которым можно определить, что нужна замена датчика кислорода ВАЗ 2114 могут быть:

  • на малом газу двигатель работает неустойчиво, обороты плавают или двигатель глохнет;
  • наблюдается устойчивый повышенный расход топлива в стандартных условиях;
  • произошло ухудшение динамических характеристик автомобиля;
  • характерные потрескивания в районе катализатора после выключения двигателя, а также специфический запах тухлых яиц по причине попадания в катализатор большого количества не сгоревшего бензина;
  • сигнал на бортовом компьютере об ошибках связанных с отказами в работе лямбда зонда.

Чаще всего с неисправным датчиком кислорода все перечисленные признаки должны проявиться и, когда возникнет ситуация с его заменой, встанет вопрос какой датчик кислорода стоит на ВАЗ 2114. В зависимости от года выпуска автомобиля в выхлопной системе могут стоять как однопроводные датчики с массой от корпуса, так и четырехпроводные. Цена лямбда зонд ВАЗ 2114 в этом случае может колебаться от 1200 до 3000 тысяч рублей.

При замене датчика следует проверить его тестированием на соответствующем приборе, может быть произошло повреждение контактов в линии прогрева и тогда возможен ремонт датчика кислорода.

Если на датчике после снятия обнаружен сильный нагар и он показывает, что разница потенциалов не очень сильно отличается от допустимых, то можно убрать этот нагар. Для этого сильно нагреть датчик, а затем его резко охладить. Нагар должен потрескаться и облететь, обмести его мягкой косточкой.


Некоторые автомобилисты интересуются у автослесарей как отключить лямбда зонд ВАЗ 2114. Сама процедура несложная, вот только необходимость в этом под большим сомнением. В этом случае ЭБУ начинает подавать бензин на впрыск в усредненных значениях и это сразу же скажется на устойчивой работе двигателя, повышении расхода топлива и ухудшении характеристик выхлопа. Не говоря о том, что потребуется перепрошивка бортового компьютера, так как он будет постоянно выдавать ошибку связанную с отсутствием датчика кислорода.

25 августа 2017

В подавляющем большинстве современных автомобилей дозированием и подачей топлива в цилиндры занимается электронная система. Блок управления (другое название – контроллер) получает сигналы от нескольких датчиков и на основании этих показаний формирует смесь горючего с воздухом в оптимальных пропорциях. Ключевую роль в процессе играет λ-зонд, иначе – кислородный датчик, который периодически выходит из строя по разным причинам. Если вы желаете глубже вникнуть в суть данной проблемы, то первым делом стоит разобраться, что такое лямбда – зонд и зачем он ставится на авто.

Роль кислородного датчика в системе топливоподачи

Горение углеводородного топлива – бензина и солярки – в цилиндрах двигателя – процесс довольно сложный. Задачи электронного блока управления состоят в следующем:

  • эффективно сжигать горючее и добиваться максимального КПД силового агрегата;
  • обеспечить минимальный расход бензина;
  • изменять количество подаваемого топлива в зависимости от режима работы мотора.

Для полного сжигания бензина в цилиндрах двигателя его нужно смешать с воздухом в соотношении 1: 14,7. Тогда практически все молекулы углерода подвергнутся окислению и образуют безвредный углекислый газ СО 2 , а водород после соединения с кислородом превратится в обычную воду (выделяется в виде пара). Не догоревший углерод тоже объединяется с кислородными частицами и дает на выходе угарный газ – СО. При правильной работе системы его доля невелика и составляет 1–1,5%.

Справка. Когда в силу разных причин расход топлива повышается, количество угарного газа на выходе из камер сгорания увеличивается от 3 до 10%. Визуально это выглядит как черный дым из выхлопной трубы.

Чтобы контроллер готовил оптимальную топливовоздушную смесь, он должен контролировать полноту ее сжигания. Тут и вступает в игру лямбда – зонд, который нужен для измерения количества свободного кислорода в выхлопе автомобиля и передачи информации в виде электрических импульсов на ЭБУ. Последний, сопоставив ее с показаниями других измерителей, отдает соответствующую команду форсункам.

Что дает измерение количества кислорода в выхлопных газах:

  1. Если на выходе двигателя слишком мало кислородных молекул, то в топливной смеси явно не хватает воздуха – она слишком обогащенная.
  2. И наоборот, превышение нормы указывает на бедную смесь в цилиндрах. При ее сжигании остается много воздуха, удаляемого вместе с выхлопом.

Блок управления отвечает за качество топливовоздушной смеси и корректирует соотношение компонентов по сигналам лямбда – зонда. Вот зачем нужен кислородный датчик в машинах, оборудованных инжектором.

Устройство измерителя и принцип действия

Внешне λ-зонд отдаленно напоминает свечу зажигания, только без керамического изолятора. На корпусе цилиндрической формы сделана резьба для вкручивания в выхлопную систему, а из верхней части выходят провода (от 1 до 4 в зависимости от конструкции). Внутри стального корпуса расположены такие детали:

  • гальванический элемент из керамики с твердым электролитическим составом;
  • на обе стороны гальванического элемента методом напыления нанесены электроды из платины;
  • камера с атмосферным воздухом;
  • контакты с заземляющим и основным проводом.

В конструкцию современных кислородных датчиков добавлен подогреватель, подключаемый к электросети в автомобиле двумя дополнительными проводами. Он разогревает электролит λ-зонда до 300–400 °С.

В датчиках О 2 нового образца гальванический элемент изготовлен из диоксида циркония, чья проводимость зависит от температуры. Отсюда и необходимость в подогревателе. Старые датчики делались на основе двуокиси титана и действовали по другому принципу.

Теперь о том, как работает лямбда-зонд с циркониевым сердечником. Алгоритм следующий:

  1. При запуске двигателя измеритель не функционирует и участия в приготовлении смеси не принимает. Контроллер «знает», что холодному мотору нужна обогащенная смесь и готовит ее по сигналам датчиков положения коленвала и массового расхода воздуха.
  2. После выхода в рабочий режим включается подогреватель λ-зонда и циркониевый элемент начинает вырабатывать импульсы постоянного тока, воспринимаемые контроллером.
  3. В зависимости от количества кислорода в выхлопных газах напряжение датчика колеблется в диапазоне от 0,1 до 0,9 вольт. Напряжение падает – снижается уровень кислорода – блок управления подает меньше топлива (обедняет смесь). И наоборот, при усилении импульса контроллер переходит к обогащению.

Принцип работы лямбда-зонда с титановым элементом другой – он действует как терморезистор. Блок управления опрашивает измеритель несколько раз в секунду и фиксирует изменение сопротивления, на основании чего корректирует топливовоздушную смесь.

Где расположен λ-зонд?

Поскольку датчик измеряет количество кислорода в отработанных газах, его устанавливают на одну из секций выхлопного тракта. В зависимости от марки и модели авто измеритель вкручивается в выпускной коллектор непосредственно возле двигателя либо в первую секцию дымоотводящей трубы.

В связи с переходом на новые экологические нормы (начиная от Euro 3), схема контроля над выбросами автомобиля усложнилась . Дело в том, что следом за датчиком О 2 в выпускном тракте установлен каталитический нейтрализатор – металлический бочонок с керамическими сотами, чья задача – дожигать вредные продукты работы мотора – угарный газ и окись азота. Данный элемент тоже со временем выходит из строя, что никак не сказывается на работе двигателя, а вот количество вредных выбросов резко увеличивается.

Чтобы контролировать техническое состояние нейтрализатора, производители начали ставить второй лямбда-зонд. Он вмонтирован в трубу после бочонка и проверяет количество кислорода в газах перед выходом в атмосферу.

Если контроллер «увидит», что разницы в показаниях двух измерителей нет, он включит на панели приборов табло Check Engine, а при компьютерной диагностике укажет на ошибку катализатора.

Молекулы воздуха, попавшие в нейтрализатор, должны соединиться с вредными газами, например, СО превращается в СО 2 . При нормальной работе системы второй зонд на выходе должен фиксировать уменьшение кислорода.

В машинах с мощными моторами на 6–12 цилиндров число датчиков О 2 может достигать 4 шт. и более. Это объясняется просто: в подобных авто реализована система распределенного выхлопа с двумя трактами. Соответственно, на каждом из них стоит каталитический нейтрализатор и 2 λ-зонда.

Признаки и причины неисправности элемента

Поскольку лямбда-зонд в машине связан с контроллером, то в случае неполадок с датчиком ЭБУ включает сигнал Check Engine. Это происходит в следующих случаях:

  • измеритель дает некорректные показания, например, напряжение больше 0,9 В либо меньше 0,1 В;
  • произошел обрыв электрической цепи (перетерся или надломился провод, идущий к λ-зонду);
  • замыкание проводки;
  • механическое повреждение элемента вследствие езды по грунтовым дорогам;
  • датчик выработал свой ресурс, который лежит в пределах 40–80 тыс. км пробега авто.

Прошивка контроллера любого автомобиля имеет запасной алгоритм на случай поломки лямбда-зонда. Когда блок управления «замечает» неисправность измерителя, он исключает его из работы системы питания и руководствуется данными от остальных приборов – датчика температуры, скорости, детонации, положения дроссельной заслонки и коленчатого вала. Показания λ-зонда он принимает как усредненные, зафиксированные в его памяти ранее.

Поэтому наряду со включенным табло Check Engine на неисправность кислородного датчика указывают и другие симптомы:

  1. Нестабильная работа двигателя на холостых оборотах.
  2. Повышенный расход топлива.
  3. Снижение мощности силового агрегата и рывки в процессе движения по причине загрязнения электродов свечей зажигания.
  4. «На горячую» двигатель заводится с трудом при нормальном холодном запуске.
  5. Из выхлопной трубы валит черный от сажи дым.

Перечисленные проблемы – это следствие потери контроля над качеством сгорания топлива, вот почему лямбда – зонд так важен.

В некоторых ситуациях контроллер не зажигает надпись Check Engine и не переходит в аварийный режим, но указанные симптомы все равно проявляются. Это говорит о том, что датчик О 2 начал банально «врать», из-за чего ЭБУ готовит топливную смесь неправильно.

Обнаружить виновника подобной неисправности в домашних условиях затруднительно – похожие признаки наблюдаются и при поломке других датчиков. Если вы столкнулись с такой ситуацией, лучше обратиться на автосервис к специалисту – электрику.

Причины некорректной работы λ-зонда могут быть следующие:

  • езда на этилированном бензине;
  • добавление в топливо и масло поддельных присадок;
  • использование при ремонте силового агрегата дешевых герметиков, содержащих неорганические растворители.

Из-за перечисленных действий в тракт выпуска дымовых газов попадают посторонние агрессивные пары, разрушающие электроды кислородного датчика, а вместе с ним и керамические соты нейтрализатора.

Вышедший из строя лямбда – зонд подлежит замене, каких-либо методов ремонта не существует. Деталь недешевая, но от нее зависит «здоровье» и ресурс двигателя, поэтому лучше не экономить и не устанавливать различные эмуляторы – так называемые обманки. Они позволяют отключить сигнал Check, но не устраняют причину неполадок, а обманутый контроллер продолжает неправильно готовить смесь, что негативно влияет на работу мотора.

Лямбда зонд устанавливается в выхлопной системе автомобиля, некоторые модели авто могут содержать в комплектации 2 кислородных датчика, в таком случае один из них устанавливается до катализатора, второй – после катализатора. Применение 2 датчиков, позволяет усилить контроль, за отработанными газами автомобиля, тем самым достигнуть наиболее эффективной работы катализатора.

Как работает лямбда зонд?
Как Вам известно, дозировкой подаваемого топлива занимается электронный блок управления, он подает сигнал на форсунки о количестве необходимого топлива в камере сгорания в тот или иной момент времени. Лямбда зонд, в этом процессе выступает в качестве устройства обратной связи, благодаря которому, происходит правильная дозировка топлива на количество подаваемого воздуха. Правильно рассчитанная смесь очень важна как с экологической точки зрения, так и с экономической. На сегодняшний день, одним из важнейших требований к производству автомобилей является экологическая безопасность, поэтому новые автомобили комплектуются как правило каталитическим нейтрализатором (катализатором) и двумя датчиками лямбда зонда. Такое сочетание устройств позволяет свести к минимуму экологический вред, который наносят автомобили окружающей среде, но при возникновении поломки в одном из функциональных узлов выпускной системы, водитель попадет на приличные деньги, ведь все это не так то и дешево стоит.

Устройство лямбда зонда.
Сам датчик состоит из 2 электродов, внешнего и внутреннего. Внешний электрод сделан из платинового напыления, поэтому особо чувствителен к кислороду, из за химический свойств платины, ну а внутренний сделан из циркония. Лямбда зонд устанавливается таким способом, чтобы через него проходили отработанные газы автомобиля, при прохождении, внешний электрод улавливает кислород в отработанных газах, при этом изменяется потенциал между электродами, чем больше кислорода – тем выше потенциал! Особенностью циркониевого сплава, из которого сделан внутренний электрод – это его рабочая температура, которая достигает отметки в 300-1000 градусов. Именно по этой причине кислородные датчики имеют в своей конструкции подогреватели, которые доводят температуру самого датчики до рабочей в момент холодного запуска двигателя.

Лямбда зонды бывают 2 видов:

  • Двухточечный датчик.
  • Широкополосный датчик.

Эти два вида датчика между собой схожи по внешним признакам, но при этом выполняют работу различными способами.

Двухточечный датчик – это пример того датчика, который мы описывали ранее, состоит он с двух электродов, он фиксирует коэффициент избытка воздуха в топливной смеси, по величине концентрации кислорода в отработанных газах автомобиля.

Широкополосный датчик – является современной конструкцией лямбда зонда, в нем значение получают благодаря использование силы тока закачивания. По своей конструкции широкополосный датчик состоит из двух керамических элементов, двухточечного и закачивающего. Закачивающий элемент – физическим процессом закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока. Датчик держит постоянное напряжение 450 мВ, если концентрация кислорода уменьшается – напряжение между электродами возрастает и подается сигнал в электронно управляющий блок. Как только сигнал поступил на ЭБУ, создается ток определенной силы на закачивающем элементе, этот ток обеспечивает закачку кислорода в измерительный зазор. В этом всем процессе, величины силы тока, которая подается на закачивающий элемент – это уровень концентрации кислорода в отработанных газах.

Основные причины и признаки неисправностей. Существует несколько признаков, по которым можно определить неисправность кислородного датчика:

  • Увеличение токсичности выхлопных газов. Этот показатель на «глаз» определить невозможно, только с помощью замера специальным прибором, можно сделать вывод что уровень СО выхлопных газов увеличен. Показания прибора о увеличении СО гласит о нерабочем датчике лямбда зонд.
  • Увеличение расхода топлива. Этот признак более заметен, чем предыдущий. Любой автомобилист интересуется, какой количество топлива расходуется автомобилем на определенное расстояние, поэтому повышение расхода будет заметно практически сразу. Единственный нюанс в этом способе определения – не всегда увеличение расхода топлива говорит о неисправности кислородного датчика.
  • Check Engine. Все инжекторные автомобили имеют блок управления, который можно диагностировать на причину поломки в том или ином узле. Как правило, при появлении неисправности на приборной панели загорается соответствующая лампочка «Check Engine». В большинстве случаев, горение этой лампы говорит о неисправности лямбда зонда, более подробно можно узнать при диагностике на сервисе.

Причины неисправностей:

  • Качество топлива. При некачественном топливе, на кислородном датчике откладывается небольшими долями свинец, этот слой со временем снижает чувствительность внешнего электрода к кислороду. Такой датчик можно со временем смело считать нерабочим.
  • Механическая неисправность. К этим неисправностям относятся чисто механические повреждения самого датчика. Например: повреждение корпуса датчика, нарушение целостности обмотки обогрева и прочее. Решаются такие причины путем замены датчика на новый, ремонт практически невозможен и не целесообразен.
  • Неисправность в топливной системе автомобиля. Из за неисправности форсунок, в цилиндры двигателя подается большее количество топлива, чем требуется, следовательно, оно не сгорает, а выходит в выхлопную систему в виде черного налета (сажи). Со временем эта сажа накапливается на всех узлах выхлопной системы автомобиля, в том числе и на лямбда зонде, это становиться причиной неправильной работы датчика. Как лечение, можно использовать тряпки и средства очистки, чтобы вычистить кислородный датчик, но если такие загрязнения будут постоянными – можно смело выбрасывать датчик и устанавливать новый.

Следите за автомобилем и своевременно выполняйте диагностику, это поможет сохранить функциональные узлы в хорошем состоянии на протяжении длительного времени.